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Abstract - With the introduction of microservice architecture 

for the development of software applications, a new breed of 

tools, platforms, and development technologies emerged that 

enabled developers and system administrators to monitor, 

orchestrate and deploy their containerized microservice 

applications more effectively and efficiently. Among these vast 

arrays of technologies, Kubernetes has become one such 

prominent technology widely popular due to its ability to deploy 

and orchestrate containerized microservices. Nevertheless, a 

common issue faced in such orchestration technologies is the 

employment of vast arrays of disjoint monitoring solutions that 

fail to portray a holistic perspective on the state of microservice 

deployments, which in turn, inhibit the creation of more 

optimized deployment policies. In response to this issue, this 

publication proposes the use of a network science-based 

approach to the creation of a microservice governance model 

that incorporates the use of dependency analysis, load 

prediction, centrality analysis, and residency evaluation to 

effectively construct a more holistic perspective on a given 

microservice deployment. Furthermore, through analysis of the 

factors mentioned above, the research conducted, then goes on 

to create an optimized deployment strategy for the deployment 

with the aid of a developed optimization algorithm. Analysis of 

results revealed the developed governance model aided through 

the utilization of the developed optimization algorithm proposed 

in this publication, proved to be quite effective in the generation 

of optimized microservice deployment policies. 

Keywords: Auto-scaling, Chaos Engineering, Container, 

Docker, Kubernetes, Machine Learning, Microservices, Time 

Series 

I. INTRODUCTION  

The term “microservices” was first introduced in 2011 [1] 
and was considered as a specialized implementation of 
Service-Oriented Architecture (SOA), coined to denote the 
common architectural approach of decomposing applications 
into smaller self-contained, loosely coupled services. The 
microservice architectural style was later widely adopted in 
place of the traditional monolithic architecture by many 
leading companies such as Amazon, Netflix, LinkedIn, and 
SoundCloud due to the capability to develop loosely coupled 
services possessing the ability to be independently deployed, 
versioned and scaled, while ensuring in benefits such as faster 
delivery, more excellent performance, and greater autonomy 
[1]. 

The shift in architectural style from the traditional 

monolithic architecture to microservice architecture also 

brought forth the creation of a set of new methodologies and 

approaches that established the policies, standards and best 

practices for the adoption of microservices, designed for the 

agile IT environment, known as “Microservices Governance” 

[2].  This approach to governance was entirely dissimilar to 

the traditional governance policies followed in monolithic 

applications mainly since governance in microservices 

followed a decentralized approach, whereas governance in 

monoliths followed a centralized approach where decisions 

were made “top-down” [2]. Although the decentralized 

approach of governance of microservice provided advantages 

such as the freedom to develop applications using different 

technology stacks, a downside of this approach was that more 

steps should be taken to ensure effective governance is 

maintained, since typical applications required 

interconnections between a vast number of microservices 

where business process workflows were continuously 

introduced. Consequently, organizations required the service 

of a variety of tools, ranging from monitoring and autoscaling 

to others such as configuration management, service 

discovery, and fault tolerance, that facilitated the multitude of 

tasks required to ensure effective microservice governance 

was in effect.  
In addition to the tools mentioned above, new deployment 

strategies that facilitated the newly developing microservice 
infrastructure were introduced. Among them, 
containerization of microservices became one of the most 
effective ways to deploy microservice applications due to its 
ability to efficiently package microservices by encompassing 
all the required libraries and dependencies needed during 
runtime. This procedure separated the application from the 
underlying infrastructure and enabled developers to run the 
application in an isolated environment, ensuring performance 
and functionality. As a result, propelled by services such as 
Docker, containerization became the preferred approach for 
effectively deploying microservices, in contrast to the 
traditional virtualization-based approach previously adopted. 
However, in the case when the number of microservices of a 
particular application increased, it became increasingly 
difficult to coordinate, schedule, monitor, and maintain the 
required containerized microservices, especially in times 
where utmost application performance was required. In 
response to this issue, the Kubernetes framework was 
introduced in 2014 [3] to allow organizations to run 
distributed systems more resiliently by providing effective 
solutions for load balancing, storage, orchestration, 
automated rollouts, and self-healing mechanisms [4]. The 
unique characteristics offered by Kubernetes in this regard, 
thereby made it one of the essential microservice-based 
technologies available for organizations to deploy their vast 
arrays of microservice applications in production-grade 
environments.  

The introduction of Kubernetes ushered in a new era of 
microservice governance through the introduction of 
container orchestration. Nevertheless, as evident throughout 
this publication, despite its immense use in orchestrating 
microservice applications, Kubernetes is still not able to 
provide a perfect governance solution to most modern 
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microservice applications, as there are still prevalent issues 
that need to be addressed in Kubernetes particularly 
concerning the policies followed in the deployment of 
interdependent microservices.  

A primary reason for the existence of inefficient 
optimization policies in Kubernetes based microservice 
deployments is the lack of the tools and services to obtain a 
holistic view of Kubernetes deployments and thereby 
optimize cluster performance. The current tools and services 
offered by Kubernetes often have to be pre-configured to the 
existing pre-conceived knowledge of the developers in 
contrast to the actual real-time utilization. Although 
implementing such solutions may be of use in the short term, 
it maybe it may be difficult to further improve upon the 
performance of the microservice cluster in the long term due 
to the lack of a holistic view on the interaction of the 
interdependent microservices in real-time use. Hence, it 
should be realized that if a particular microservice 
deployment is to be optimized for performance, a clear 
understanding regarding the relationships among the 
interdependent microservices during runtime is required. 
However, if a microservice deployment is to be truly 
optimized for optimal performance, it may also be necessary 
to take into account factors such as the resilience among the 
interdependent microservices, the effect of autoscaling in 
addition to a clear understanding on the interactions of 
interdependent microservices. Regardless, even though there 
are several monitoring solutions available for such purposes, 
such as Prometheus, Istio, and Chaos toolkit, their disjoint 
nature prevents them from allowing users to obtain a holistic 
perspective on the state of their deployed microservices. 
Furthermore, in cases such as fault management, error 
handling, and performance monitoring, due to the disjoint 
nature of these monitoring solutions, users are often unable 
to gain insight into possible solutions as to why a particular 
problem or bottleneck has occurred even though they are 
made aware of the presence of a particular problem by these 
monitoring solutions.  

In addition to the above-mentioned issues, these 
monitoring solutions are also often and plagued with other 
challenges such as the difficultly in successfully configuring 
and integrating these monitoring tools with the existing tools 
used by organizations [5]. The issues mentioned above may 
also further complicate the already complicated management 
and configuration process prevalent in Kubernetes and, in 
turn, may confuse inexperienced developers and system 
administrators, ultimately leading towards misallocation of 
cluster resources and degradation of cluster performance.  

In response to the issues stated above, this publication 
proposes a novel approach to the creation of a unified 
governance model that can be used by developers and system 
administrators to effectively oversee the performance of their 
microservice deployments factoring in dependency analysis, 
load prediction, centrality analysis, and residency evaluation 
to determine the optimal placement of microservices and 
thereby create an optimized deployment plan for a given 
microservice deployment. Thus, through the application of 
the proposed governance model, users would be able to 
obtain a more holistic view of their deployment, resulting in 
a greater understanding of the runtime behavior of the 
deployed microservices, thereby enabling greater 
optimization possibilities. Through application of the 
approach proposed in this publication, the authors wish to 
provide key insight to the contribution of a new set of 
microservice deployment optimization methodologies, which 
factor in the impact of key factors such as dependency among 

deployed microservices, autoscaling policies as well as 
resilience measures in microservice deployments. 

The governance model proposed in this publication is 
comprised of four main components, each aimed at capturing 
a particular dimension of the microservice deployment with 
the ultimate goal of achieving a more holistic view of a given 
microservice deployment. Accordingly, the key components 
of the proposed model are as follows. 

 
I. A generated microservice co-dependency map 

which is aimed at obtaining a clear perspective about 
the dependencies between each microservice and the 
importance of the deployment plan. 

II. A load prediction and centrality analysis component 
for the prediction of the level of interdependency 
among co-dependent microservices, the resource 
utilization of pods in the cluster as well as 
performing the task of the calculation of centrality 
measures of microservices in the co-dependency 
network. 

III. A resilience evaluation component to determine the 
resiliency of microservices in the cluster. 

IV. An optimal placement algorithm to determine the 
optimum placement of microservices in the 
Kubernetes cluster based on the above stated 
predicted loads, resiliency, and centrality measures.
  

The rest of this publication is organized as follows. 
Section Ⅱ discusses the background and the related work 
literature referenced in the development of this optimization 
model. Section Ⅲ discusses the architecture of the proposed 
model, along with an in-depth view of its components. 
Section Ⅳ discusses the methodology followed in the 
development of the proposed model. Section Ⅴ discusses the 
results obtained using the developed model and, finally, the 
conclusion of this publication,  along with directions for 
future work, is outlined in Section Ⅵ. 

II. BACKGROUND AND LITERATURE  

The apparent need for improved microservice governance 
modeling strategies, along with some of the prevalent issues 
in current microservice governance methodologies, have 
been highlighted in several publications throughout the years. 
The authors of  [6] highlight the need for new modeling 
strategies that capture the recent advances in deployment 
technology such as Kubernetes. The publication [7] states the 
inability of monitoring frameworks to measure microservice 
performance level metrics would lead to the creation of 
several new research topics, which include the development 
of holistic techniques for collecting and integrating 
monitoring data from microservices and datacenter resources. 
In contrast, publications such as [1] highlight the use of past 
actions and events to better inform resource management 
decisions in microservice environments along with the 
challenges such as the overloading of monitoring events 
faced in resource monitoring and management processes.  

In addition, several publications have also proposed 
performance modeling strategies for Kubernetes 
deployments. In this regard, [8] an architectural approach that 
federates Kubernetes clusters using a TOSCA-based cloud 
orchestration tool. In contrast, research publications such as 
[9] proposed a tool named Terminus to solve the problem of 
finding the best-suited resources for the microservice to be 
deployed so that the whole application achieves the best 



performance while minimizing the resource consumption. 
Other researches include the reference net-based model for 
pod & container lifecycle in Kubernetes proposed by the 
authors of [10] and the generative platform for benchmarking 
performance and resilience engineering approaches in 
microservice architectures as proposed in [11]. 

The approaches suggested in the publications stated 
above are all approaches that aim at performance 
optimization of Kubernetes deployments. However, a key 
aspect to note in this regard is the fact that the methodologies 
stated in the publications mentioned above, fail to capture 
critical dimensions such as the dependent relationships 
between microservices, the effect of autoscaling policies, 
resiliency to determine the optimal placement of a particular 
microservices concerning its global significance. Therefore, 
to our knowledge, there is no current solution proposed, that 
takes into consideration an integrated modeling strategy, 
factoring key elements essential to the optimization of 
microservice deployments such as co-dependencies present 
as well resilience and centrality measures among 
microservices when developing a holistic governance policy 
for Kubernetes based microservice deployments, as proposed 
in this research. 

The governance model proposed in this publication is 
primarily aimed at resolving the key issues in present 
microservice governance methodologies. Hence, a pre-
requisite knowledge regarding the nature of these issues was 
vital in the development of the proposed governance model. 
The following sub-sections provide an in-depth insight into 
these key issues as well as the methodologies proposed by 
fellow publications in the discovery of practical solutions. 

A. Microservice Monitoring 

Even though Kubernetes and all other tools resolve 
various problems and improve the functionality of the 
microservices, there are still some issues and performance 
bottlenecks either these tools cannot solve, or the tools 
introduce. This is evident from previous researches such as  
[12] which describes the drawbacks of Kubernetes when it 
comes to containerized microservices. 

The research conducted by authors such as [13] highlights 
the importance of having a monitoring solution to monitor the 
workload and the performance of the cluster. In addition, 
publications such as [14] describe some of the key challenges 
faced in the deployment of microservices and the need for 
Application Performances Monitoring tools, especially those 
deployed in containers to include additional measures to 
monitor microservices such that they could use as input for 
resilience mechanisms and creation of auto-scaling policies. 

Even though there are numerous researches about 
Kubernetes and service mesh, there were negligible 
publications considering the dependency between 
microservices as a whole.  The available publications go on 
to describe the auto-deployment facilities of Kubernetes [15]; 
however, they do not describe how that can affect the network 
latency between microservice are deployed automatically in 
the available nodes.  

In simple terms, the governance model proposed in this 

publication will incorporate the calculation of the number of 

requests to measure the dependency level between each 

microservice by obtaining a quantifiable value, which then 

can be used to compare and order the dependency. The 

obtained values can be used to generate dependency maps in 

service, pod, and workload levels. The implemented system 

will use several metric query engines to obtain necessary 

metrics regarding hardware aspects of pods, nodes, and the 

cluster and develop a collection of APIs to generate necessary 

data sources for other components on demand. 

B. Rule-based Autoscaling  

The decentralized and modular design approach to 
microservices entails that workloads across microservices are 
dynamic, where at a specific instance of time, a particular 
microservice may require the need to face varied workload 
intensities compared to its counterpart services. This process 
is in contrast to scaling in traditional monolithic applications 
in which, during intense workloads, the entire application 
stack is scaled, leading to a misallocation of resources. 
Therefore, as part of its orchestration policy, the Kubernetes 
framework makes use of autoscaling in order to ensure 
microservices can adapt to dynamic workload intensities 
while allowing resources to be provisioned more 
conservatively. 

Autoscaling of resources could be achieved through 
following a variety of techniques, as stated in [16] however, 
the autoscaling process in Kubernetes is primarily achieved 
through the use of Horizontal Pod Autoscaler (HPA) and 
Vertical Pod Autoscaler (VPA). Although the governance 
model proposed in this publication primarily makes use of the 
HPA, due to the model being primarily focused on the use of 
existing cluster infrastructure, a common characteristic that 
these tools possess is the fact that they primarily adopt local 
and rule-based auto-scaling techniques to dynamically 
manage the number of microservice resources in a particular 
deployment. 

Rule-based autoscaling involves defining the conditions 
under which capacity will be added to or removed from a 
cloud-based system, in order to satisfy the objectives of the 
application owner [17]. Therefore, for a rule-based 
autoscaling approach to be effective, the application provider 
has to specify upper and lower bounds, which are usually 
defined through a performance metric such as CPU 
utilization. This approach to rule-based approach to 
autoscaling has therefore defined rule-based autoscaling as a 
more reactive approach to provision resources since the 
autoscaling process occurs when the defined thresholds and 
bounds set, are exceeded. Furthermore, most rule-based 
autoscaling policies adapt the MAPE (Monitor, Analyze, 
Plan, Execute) control loop reference model used in various 
autonomic computing systems. This MAPE reference model 
is primarily adopted in orchestration tools such as Kubernetes 
in the creation of guidelines of self-adaptive software systems 
[18]. However, there are some issues prevalent in the 
adaptation of this model, along with the rule-based 
autoscaling policies adopted. These include issues ranging 
from the lack of adaptability to dynamic workloads faced, 
which result in undesirable Quality of Service (QoS) and 
reduced resource utilization  [18], to issues such as the 
response delay faced in resource creation. Moreover, the lack 
of autoscaling studies focusing on the service-level of 
autoscaling and the use of service level metrics, as well as the 
lack of monitoring tools and aggregating metrics at the 
platform level and service level to support autoscaling 
decisions  [19], also manage to aggravate the issues 
mentioned above. 

In this regard, numerous publications have proposed a 
wide array of approaches ranging from proactive autoscaling 
through resource prediction, to other approaches such as 
performance modeling, in order to combat some of the issues 
prevalent in autoscaling process in platforms such as 
Kubernetes. Fundamental researches include resource 
consumption prediction models such as those proposed by the 



authors [20]–[24], approaches to the creation of improved 
autoscaling policy as stated in publications such as [25], [26] 
as well as improved autoscaling frameworks proposed by 
publications such as   [27]–[30]. Regardless, it is evident that 
even though the solutions for improved autoscaling strategies 
proposed by these researches were quite effective, they were 
mostly focused on the creation of localized autoscaling 
policies without taking int account the overall impact of 
globally aware autoscaling policy based on importance and 
the optimal placement of microservices, in contrast to the 
governance model introduced in this publication. 

C. Resilience Evaluation 

Failures are inevitable; even the most robust platforms 
with concrete operations infrastructure could face outages in 
production when the system’s threshold to withstand 
turbulent conditions go out of control. There is no single 
reason why a system fails, and it is not possible to 
immediately address a failure without prior knowledge on 
why and when that specific failure might occur, the same 
implies to the widely used Kubernetes platform. Even when 
all of the individual services in a Kubernetes environment are 
functioning correctly, the interactions between those services 
can cause unpredictable outcomes [31]. 

The concept of chaos engineering was brought up by 
Netflix to identify its system flaws. Failure injection testing 
laid the foundation for the emergence of tools such as chaos 
monkey, chaos toolkit, which allows users to inject failures 
carefully to the system and examine the behavior [32]. With 
the use of Kubernetes for microservice deployments, it 
provided a friendly environment towards chaos engineering 
practices as it provided native features for resiliency [33]. 
Regardless, publications such [6] describe some of the critical 
challenges faced in the deployment of microservices and the 
need for APM tools, especially those deployed in containers 
to include additional measures to monitor microservices such 
that they could be used as input for resilience mechanisms 
and creation of auto-scaling policies.   

When analyzing the optimal deployments of 
microservices, the fact that resiliency has not been considered 
as an essential factor [34], Even though fault tolerance and 
resiliency evaluations have been performed on microservices, 
the results obtained are only used in the identification of the 
weaknesses of the system. Resilience evaluation is therefore 
vital in the determination of critical services in microservice 
deployment and aid in providing key insight into the 
determination of optimized deployment strategies. 

D. Optimal Microservice Placement  

Although the deployment process of containerized 
microservices in Kubernetes allows functionalities such as 
scheduling deployments and autoscaling, the capability to 
determine the optimal placement of microservices in the 
deployment of containers does not exist. In fact, Kubernetes 
is unable to determine the optimal placement for the 
deployment of containers unless explicitly configured. 
Furthermore, deploying an application without consideration 
of dependencies may result in low application performance. 
Besides, tools such as HPA, which perform real-time 
autoscaling, also do not consider the effect of dependent 
services in the determination of the optimum number of 
instances.  

There have been few pieces of research conducted related 
to microservices optimal deployment, which give 
prominence to optimal microservice placement. The research 
conducted by the authors of [35] propose a solution for 
determining the optimal microservice placement in 

microservices through analysis of historical values and 
microservice dependencies, similar to that proposed in this 
publication; however, the research conducted does not take 
into consideration key factors such as the inter-node latency 
between nodes in the cluster as wells as the inclusion of 
measures such as resilience and centrality evaluation, and 
although the approach suggested in the research makes use of 
historical data in the determination of microservice 
placement it does not make use of the historical data to make 
effective prediction mechanisms using the gathered historical 
data to adapt to changes that may affect future placement 
decisions. 

III. PROPOSED MODEL 

As previously stated, the proposed governance model is 
primarily comprised of four primary components, each aimed 
at capturing a particular dimension of a given microservice 
deployment. Fig. 1, given below, depicts a high-level view of 
the core components of the proposed governance model.  

 

Fig. 1. Key components of the proposed governance model 

A. Microservice Co-dependency Network 

 

Fig. 2. High-level diagram of components utilized in the creation of the co-

dependency network 



The microservice co-dependency network component is 
developed through the combination of the three sub-
components as depicted in Fig.2 above. 

 
a. An Istio service mesh platform that incorporates 

Kiali and Prometheus monitoring solutions. 

b. A backend Node server for integration with metric 
APIs provided by monitoring solutions. 

c. A database solution for the storage of gathered 
metric data. 

Istio is an open-source service mesh platform that can be 
used to monitor and control the behavior of microservices 
when it comes to sharing data with one another [36]. Istio is 
thereby be configured on top of the Kubernetes environment 
to facilitate the creation of the dependency map. 

The proposed model will make use of the services and 
APIs that Istio provides to develop a backend server to query 
metrics from the Kubernetes cluster. Based on those metrics, 
the proposed model makes use of a generated dependency 
map that is utilized to get a holistic perspective of the 
microservice network. Also, the collected metrics from the 
cluster is stored in the configured database solution to 
facilitate the creation of load-based prediction models, as 
highlighted in the sections below. Furthermore, the proposed 
model is able to generate a set of YAML files [37] based on 
the optimal deployment plan and administer the generated 
YAML files to the cluster with the consent of the user.  

B. Load prediction and Centrality Analysis 

 

Fig. 3.  High-level diagram of load prediction and centrality analysis 

component 

The load prediction component and centrality analysis 
component are primarily responsible for performing the 
following essential tasks, as depicted in Fig. 3 above.  

 

• Prediction of future resource utilization values 
(primarily CPU and memory) based on historical pod 
resource utilization data. 

• Prediction of inter-microservice link weight 
(dependency measures), based on historical link 
weight data derived from the load based metrics in the 
co-dependency network. 

• Calculation of centrality measures of microservices in 
the co-dependency network. 

The resource utilization prediction process is performed 
through performing a time series-based prediction on pod 
utilization metrics, in which predicted CPU and memory 
utilization values for a particular period are forecasted. 
Furthermore, the prediction process for resource utilization is 
performed through the application of a Short-Term Long 
Memory (LSTM) network in which a particular number of 
time steps of utilization metrics are used to predict future 
utilization values.  Here, the LSTM model has been chosen 
as the preferred prediction model due to its inherent ability to 
learn long term dependencies with a high degree of accuracy 
compared to similar time series prediction models. Once 
predictions are made, the predicted utilization values for a 
particular period (e.g. - 24 hours in advance) are passed 
through to the optimization algorithm to infer autoscaling 
decisions. 

The process of inter-microservice link weight prediction 
is primarily a network-based time-series prediction in which 
the inter microservice link weights derived through load 
based metrics, as described in the previous section, are 
forecasted such that the next predicted weight for the links in 
the co-dependency map is determined. The forecasted 
weights determined through the use of an LSTM prediction 
model could then be used to provide an accurate estimation 
of the load that is expected to be received by microservices in 
the cluster, enabling the identification of key potential 
microservices which may in turn, highly manipulate 
microservice placement decisions and the realization of 
optimal cluster performance 

Calculation of microservice centrality measures will also 
be performed within the load prediction component. Here, the 
microservices in the co-dependency network are evaluated on 
several centrality measures to facilitate the identification of 
influential microservices in the cluster. These calculated 
centrality measures are then sent to the optimization 
algorithm as inputs, to infer autoscaling decision through 
determination of required service instance levels. In this 
regard, the proposed governance model is expected to make 
use of the key centrality measures such as degree, 
betweenness, closeness as well as eigenvector centrality 
measures to facilitate the identification process of influential 
microservices.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                             (1) 

                                                                               (2) 

C. Resiliency Evaluation 

 

 

Fig. 4. High-level diagram of  resilience evaluation component 

The resilience evaluation component is particularly based 
on chaos engineering principles. Utilizing the co-dependency 
network, most prominent nodes will be targeted for 
conducting chaos experiments. In short, this component will 
primarily be responsible for performing chaos experiments to 
identify system weaknesses as depicted in Fig.4 above. 

Identifying system weaknesses is done using a chaos 
experimenting tool referred to as chaos toolkit. Here, a set of 
actions is performed on each node in order to examine how 
the system behaves according to the changes performed. For 
instance, a selected pod is terminated using the “terminate 
pod” action, and the system is examined to see whether the 
system remains available or the other services remain 
healthy. Furthermore, by using chaos toolkit extensions such 
as Istio Fault Injection, delays can be created to investigate 
how the system responds.  

To obtain metrics such as CPU usage, disk space, and 
bandwidth, we could use the chaos toolkit-Prometheus 
extension. With the use of this extension, the above-
mentioned metrics can be extracted while applying different 
conditions to the system. Moreover, various experiments are 
done to create different conditions for the system such that 
the resilience of the system can be determined precisely. 

D. Optimization Algorithm 

The optimization algorithm utilized in the proposed 
governance model is predominantly based on the NSGA-Ⅱ 
(Non-Dominant Sorting Genetic Algorithm) algorithm.  The 
algorithm generates a multitude of optimized solutions that 
enables the user to infer optimization decisions predicated on 
three key optimization categories, which are as follows. 

 

• Solutions optimized for best performance and 
availability, thereby maintaining a balance between 
reduced latency and number of instances. 

• Solutions optimized for optimal performance based 
on the reduction of latency. 

• Solutions optimized for highest availability based 
on the maximization of the number of instances. 

These optimized solutions are generated following four 
main input parameters utilized by the optimization algorithm. 

1. Predicted microservice dependency measures from 
the load prediction and centrality analysis 
component. 

2. Node latency map generated from the Node Server. 

3. Required number of microservice instances derived 
from centrality measures and predicted resource 
utilization metrics from the load prediction and 
centrality analysis component. 

4. General cluster infrastructure information gathered 
from monitoring solutions. 

The sub-sections below provide an in-depth insight into 
the manner these input parameters are utilized in the 
developed algorithm as well as their impact on the creation of 
holistic optimization policies. 

I. Predicted Microservice Dependency Measures 

In microservice deployments, although factors such as 
latency cannot be completely eliminated, dependent 
microservices can be deployed in nearby nodes or the same 
node in order to reduce the overall latency of an application. 
Therefore, making use of this approach while intending to 
solve low availability and sub-optimal performance issues, as 
well as to aid in the creation of autoscaling policies, the 
developed optimization algorithm makes use of the predicted 
load-based link weights obtained from the load prediction 
component. This is done such that optimal placement and 
scaling decisions could be performed ahead of time, 
establishing a future deployment strategy such that users such 
as DevOps engineers would be able to make use of the 
gathered information to create an optimized microservice 
deployment plan. In addition, making use of the predicted 
dependency measures (load-based link weight), optimal 
placement decisions are determined through the application 
of formula (1) and (2), as defined below, which calculates the 
average latency among the microservice instances, based on 
the dependency measures and as the node latency map 
obtained from the Node server. 

TABLE I.  AVERAGE LATENCY CALCULATION 

n Number of dependencies in pod-

level 

m Number of dependency links in 

app-level 

W Dependency request weight in app-

level 

L The latency of dependency in pod-

level 

D Dependency average latency in 

app-level 

TL Total latency 

 

                                        𝐷𝑗 =  
∑ 𝐿𝑖

𝑖=𝑚
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II. Node Latency Measures 

The main objective of the optimization algorithm is the 
maximization of performance through the minimization of 
latency among microservices. Therefore, the developed 
optimization algorithm also utilizes a developed node latency 
map obtained from the Node Server, to evaluate the fitness of 
generated solutions. 

III. Required Microservice Instances   

In the process of fitness calculation, the first step is the 
calculation of the required number of instances per 
microservices. Here, the calculation of the required number 
of microservices instances is performed by utilizing the 
predicted resource utilization values derived from the load 
prediction component, applied on the Horizontal Pod 
Autoscaling algorithm. Also, the centrality measures derived 
from the co-dependency network will be utilized to infer the 
optimum microservice instance levels, particularly in cases 
where historical information of the cluster is unknown. The 
required microservice instance levels are also utilized in 
availability fitness calculation measures, aided through the 
use of a generalized logistic function [38] to avoid giving 
high scoring fitness values from resources that require low 
resource consumption and are of low instance levels, thereby 
establishing a fairer scoring method. In this regard, the fitness 
is calculated as defined through the formula (3) given below. 

TABLE II.  FITNESS CALCULATION 

R Required instances for each service 

S The current number of instances in 

each service 

TA Availability fitness  

n Number of microservices 

 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇𝐴 = 

 ∑ 𝑅𝑖 × 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (
𝑆𝑖

𝑅𝑖
)𝑖=𝑛

𝑖=1    (3) 

 

 
The fitness function also makes use of a scoring system 

based on the distribution of the number of instances deployed 
on cluster node resources known as the scale value. In this 
regard, a higher number of instances distributed among 
cluster nodes throughout the deployment are given a higher 
score than localized instances deployed within a single node. 
This task is performed to avoid convergence of dependent 
services into one node and affecting availability. These scale 
values are then utilized to infer performance and availability 
decisions.  

IV. General Cluster Information 

The optimization algorithm also makes use of the general 
cluster infrastructure information such as the resource power 
consumption of nodes and node labels names. The 
information gathered in this regard is primarily utilized in the 
definition of constraints utilized by the optimization 
algorithm. 

 
 
 
 

IV. METHODOLOGY 

Fig. 5 below presents an overview of the implemented 
governance model along with its key components. 
 

  

Fig. 5. Overview of the implemented solution 

A. Developing the Microservice Co-dependency Map 

This component primarily queries metrics from a 
Kubernetes cluster and saves the gathered metrics in order to 
create a dataset such that it could be used to build a co-
dependency network. As previously stated, the Istio service 
mesh is installed and configured in order to get data from the 
cluster, in the app, pod, and node levels. Istio also comes with 
a set of pre-installed services. In this regard, Kiali, 
Prometheus, and Jaeger are some of the primary services 
utilized in the development process of this component. 
Grafana is also configured using Prometheus as a data source. 
Each of these services exposes APIs that can be used to gather 
information via HTTP requests. Also, Kubernetes itself 
exposes an API that can be used to query data about the 
cluster and the environment.  

A Node server is also developed to combine all these APIs 

to query metrics from a single endpoint. Node JS is used as 

the development framework for this server in order to 

maintain the necessary speed and flexibility required. The 

server can be configured to query metrics and trigger the 

process based on a scheduler. The default option will is to run 

the process once every three hours. The collected metrics are 

then stored in a No SQL database to maintain simplicity. In 

addition, a timestamp is stored with every record to create a 

time series dataset that will be used in training machine 

learning models for more accurate results. The developed 

Node server is also capable of generating CSV (Comma 

Separated Values) files on demand of the other components 

by reading the above stated No SQL database. The server will 

also expose an endpoint that can be accessed via an HTTP 

request in order to trigger required functions on demand. All 

the data stored in the database is maintained within the same 

Kubernetes cluster without exposing it to the public in order 

to maintain the privacy of user data. Lastly, in addition to the 

above, the Node server is also responsible for the creation of 

a node latency map through evaluating the latencies between 

the nodes in the cluster. Here, the Round-Trip Time (RTT) of 



network calls between nodes in the cluster is evaluated and, 

through the use of a developed shell script, the average 

latency measures between cluster nodes are obtained and 

forwarded to the optimization algorithm.  
As mentioned earlier, one of the critical components, 

which is the generation of the microservice dependency map, 
will be done by using Kiali to record the requests and 
responses between each service for a specified period. That 
measurement can then be divided by the time to quantify the 
dependency level. The generated CSV files and the quantified 
dependency map is then used as inputs in all other 
components in this research. Furthermore, the dependency 
map is displayed in the final dashboard to provide a more 
holistic view of the microservice network to the user. 

As the server developed in this component has a direct 
connection with the Kubernetes cluster, the optimal 
deployment plans, which are given to the optimization 
algorithm component of this research, are used to generate a 
set of YAML files that can be applied to the cluster directly 
in order to change the deployment plan of the cluster. This 
will not be an automated process, and the user will be given 
a choice to apply these deployment changes to the cluster or 
not. 

B. Developing the Load Prediction and Centrality Analysis 

Component 

As previously stated, this component is primarily 
developed for the prediction of load-based link weights, 
prediction resource utilization metrics, as well as the 
calculation of centrality measures on the developed co-
dependency network. Thereby, a key objective of this 
component is the utilization of historical data and centrality 
measures to aid in the optimization of microservice 
deployments and the creation of holistic autoscaling policies. 

The entirety of the above-stated tasks is performed 
through the use of the Python programming language mainly 
due to its immense flexibility and adaptability that supports 
data augmentation along with the provision of added benefits 
such as the presence of a mature, well-developed collection 
of libraries that facilitate enhanced machine learning and 
deep learning-based programming functionalities. Hence, the 
LSTM prediction model employed for the resource utilization 
prediction and link-weight prediction purposes in this 
component is primarily developed through the utilization of 
Keras and TensorFlow python libraries. In contrast, the 
NetworkX python library is utilized for the calculation of 
centrality measures on the co-dependency network. 

For the prediction process, a time series-based approach 
is adopted to acquire the knowledge present in historical data. 
Therefore, an LSTM prediction model is utilized for this 
purpose. Furthermore, since the prediction of time series-
based values using LSTM models requires a data-science 
based approach to obtain the expected predictions, a pre-
requisite data manipulation process is required to be 
performed to obtain the most accurate prediction results.  Fig. 
6, below depicts the process followed in the prediction of 
resource utilization metrics, whereas Fig. 7 given below 
depicts the process followed in the prediction process for 
inter microservice-link weights.  

 

Fig. 6. Prediction process for resource utilization  

 

Fig. 7. Prediction process for inter microservice link weight (dependency) 

The process of the calculation of centrality is also 
performed through a data science-based approach in which a 
CSV containing microservice-link data generated from the 
Node Server is utilized in the process of centrality 
calculation. Fig. 8 given below depicts the process followed 
in the calculation of centrality measures of microservices in 
the co-dependency network. 

 

Fig. 8. The process followed in the calculation of centrality measures 



C. Developing the Resilience Evaluation Component 

As noted earlier, this component mainly focuses on 
evaluating the resilience level of the system. The process is 
performed under the principles of chaos engineering which 
are as follows. 

 
1. Building a hypothesis around steady-state behavior 

2. Vary real-world events 

3. Run experiments in production 

4. Automate experiments to run continuously 

5. Minimize blast radius 

 The main tool used for conducting these experiments is 
the chaos toolkit. Experiments are scripted in JSON or 
YAML formats, in which various actions and probes are 
defined to create different conditions in the system. A python 
virtual environment is used to host the chaos toolkit and after 
the configuration of the Kubernetes context, the chaos 
experiments are executed by running the scripts. The outputs 
of these experiments are configured as needed to exploit the 
needed metrics, and the results are generated as CSV or pdf 
files. 

D. Developing the Optimization Algorithm  

The entirety of the development of the NSGA-Ⅱ based 
optimization algorithm is performed through the use of the 
Python code scripting. Fig. 9 given below depicts an 
overview of the process utilized by the optimization 
algorithm in the determination of optimal solutions. 

 

 

Fig. 9. Overview of the optimization algorithm 

As depicted in Fig. 9, once all input parameters are 
retrieved by the optimization algorithm, the first step in the 
process is the generation of the initial population. Here, the 
initial population is generated through the use of a random 
number generator which inserts data into a pre-defined two-
dimensional array in which the microservice instances and 
their respective nodes are represented by the row and 

columns respectively. Fig. 10 depicts a sample overview of 
the structure of the generated two-dimensional array. 

 

Fig. 10. Overview of the structure of the generated two-dimensional array 

After the creation of the initial population, constraints are 
applied to the initial population to eliminate the invalid 
solutions generated. Next, fitness is computed from the 
remaining solutions and the superior parent chromosomes are 
selected based on the evaluated fitness measures. The 
selected parent chromosomes are then ranked using non-
dominant sorting, and crowding distance measures and the 
highest-ranked parent chromosomes are utilized for 
crossover. The above-described process is then run iteratively 
until the maximum generation count is reached. Lastly, the 
solutions obtained through the above-described process are 
then saved in a python data frame such that the optimized 
solutions based on three key optimization categories, as 
stated in the previous section, could be retrieved when 
needed. 

V. RESULTS AND DISCUSSION 

The developed optimization model was evaluated on a 
sample microservice cluster dataset containing 3 nodes and 6 
microservices. For evaluation purposes, the JSON 
(JavaScript Object Notation) representation of this cluster 
dataset, along with the additional information required by the 
optimization algorithm which includes the node latency map, 
predicted inter-microservice dependency measures as well as 
the required number of microservice instances, is provided to 
the developed optimization algorithm in order to compute the 
optimized solutions. Fig.11 below depicts the structure of the 
sample input JSON provided to the optimization algorithm. 

 

 

Fig. 11. Structure of sample JSON provided as input to the developed 

optimization algorithm  

Once the optimization algorithm is executed, a set of 
optimized solutions are obtained. In this regard, two 
optimized solutions are obtained once the algorithm is 
executed; one solution represents the cluster orientation with 
the highest cluster performance as depicted in Fig.12, 
whereas the second solution obtained depicts the solution that 
represents the cluster orientation with the highest cluster 



availability as depicted in Fig.13. For added clarification, the 
tabular format of the representation is given alongside the 
resulting solutions. 

     

 

Fig. 12. Resulting solution representing cluster orientation with the highest 

performance  

 

Fig. 13. Resulting solution representing cluster orientation with the highest 

availability 

Note the fact that in the tabular format depicted in Fig. 12 
and Fig. 13, each cell in the table represents the optimal 
number of instances of a given microservice that should be 
present in order to achieve the required optimization goal 
(highest performance or highest availability).  

With regard to the resulting solution obtained that 
represents the cluster orientation with the highest 
performance, the fact that the optimization algorithm has 
successfully managed to determine the cluster orientation 
with the highest performance is evident mainly due to the fact 
that the highest dependent services as provided in the input 
JSON have been determined to be placed on the same node 
by the optimization algorithm. This fact is determined 
through comparing the keys of the key-value pair sets in the 
“pod_dependency_map” feature of the input JSON which 
represents inter-dependent sets of microservices (For 
example: - “ [0, 2]: 1000 ” in the input JSON represents 
microservice M0 and microservice M2 are inter-dependent 
microservices with a dependency level of 1000), with the 

tabular representation of the resulting optimal performance 
solution, that also depicts the inter-dependent microservices 
as described in the input JSON (such as M0 and M2) placed 
on the same node.  

Similarly, through comparing the 
“microservices_instances_requirement” feature of input 
JSON which represents the required number of instances 
required for each of the six microservices respectively, with 
the resulting instance levels obtained from resulting highest 
availability solution, it is evident that the optimization 
algorithm has also ensured highest availability of 
microservices through the allocation of a higher number of 
microservice instances than the required instances. (For 
example - Microservice M0 requires the presence 4 instances 
and optimization algorithm has allocated 8 instances of M0 
as determined through its optimization process) 

VI. CONCLUSION 

This publication suggests the application of a network-
science based microservice governance model in an attempt 
to aid in the creation of optimized microservice deployment 
policies currently hindered due to the employment of disjoint 
monitoring solutions prevalent in microservice-based 
governance methodologies that fail to portray a holistic 
perspective regarding the status of microservice 
deployments. In this regard, the proposed model seeks the 
creation of a holistic perspective of microservice 
deployments, through the incorporation of dependency 
analysis, load prediction measures, centrality measures as 
well as resilience measures. Furthermore, through the 
incorporation of the above measures, the research conducted 
utilizes the application of an optimization algorithm to 
determine an optimal deployment strategy for a given 
microservice deployment. 

The publication also discusses the core architecture along 
with the methodologies followed in the development of the 
proposed governance model as well as the results obtained 
through the application of the proposed governance model. 
Analysis of the results suggests the developed governance 
model proved to be effective in determining the optimized 
cluster representations pertaining to the highest performance 
and availability. However, current research suggests 
considering the inner workings of applications deployed in a 
Kubernetes cluster so as to increase the accuracy of the 
prediction models and resiliency analysis components such 
that more optimized deployment policies can be established.  
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