
A Network Science-Based Approach for an Optimal

Microservice Governance

Abstract - With the introduction of microservice architecture

for the development of software applications, a new breed of

tools, platforms, and development technologies emerged that

enabled developers and system administrators to monitor,

orchestrate and deploy their containerized microservice

applications more effectively and efficiently. Among these vast

arrays of technologies, Kubernetes has become one such

prominent technology widely popular due to its ability to deploy

and orchestrate containerized microservices. Nevertheless, a

common issue faced in such orchestration technologies is the

employment of vast arrays of disjoint monitoring solutions that

fail to portray a holistic perspective on the state of microservice

deployments, which in turn, inhibit the creation of more

optimized deployment policies. In response to this issue, this

publication proposes the use of a network science-based

approach to the creation of a microservice governance model

that incorporates the use of dependency analysis, load

prediction, centrality analysis, and residency evaluation to

effectively construct a more holistic perspective on a given

microservice deployment. Furthermore, through analysis of the

factors mentioned above, the research conducted, then goes on

to create an optimized deployment strategy for the deployment

with the aid of a developed optimization algorithm. Analysis of

results revealed the developed governance model aided through

the utilization of the developed optimization algorithm proposed

in this publication, proved to be quite effective in the generation

of optimized microservice deployment policies.

Keywords: Auto-scaling, Chaos Engineering, Container,

Docker, Kubernetes, Machine Learning, Microservices, Time

Series

I. INTRODUCTION

The term “microservices” was first introduced in 2011 [1]
and was considered as a specialized implementation of
Service-Oriented Architecture (SOA), coined to denote the
common architectural approach of decomposing applications
into smaller self-contained, loosely coupled services. The
microservice architectural style was later widely adopted in
place of the traditional monolithic architecture by many
leading companies such as Amazon, Netflix, LinkedIn, and
SoundCloud due to the capability to develop loosely coupled
services possessing the ability to be independently deployed,
versioned and scaled, while ensuring in benefits such as faster
delivery, more excellent performance, and greater autonomy
[1].

The shift in architectural style from the traditional

monolithic architecture to microservice architecture also

brought forth the creation of a set of new methodologies and

approaches that established the policies, standards and best

practices for the adoption of microservices, designed for the

agile IT environment, known as “Microservices Governance”

[2]. This approach to governance was entirely dissimilar to

the traditional governance policies followed in monolithic

applications mainly since governance in microservices

followed a decentralized approach, whereas governance in

monoliths followed a centralized approach where decisions

were made “top-down” [2]. Although the decentralized

approach of governance of microservice provided advantages

such as the freedom to develop applications using different

technology stacks, a downside of this approach was that more

steps should be taken to ensure effective governance is

maintained, since typical applications required

interconnections between a vast number of microservices

where business process workflows were continuously

introduced. Consequently, organizations required the service

of a variety of tools, ranging from monitoring and autoscaling

to others such as configuration management, service

discovery, and fault tolerance, that facilitated the multitude of

tasks required to ensure effective microservice governance

was in effect.
In addition to the tools mentioned above, new deployment

strategies that facilitated the newly developing microservice
infrastructure were introduced. Among them,
containerization of microservices became one of the most
effective ways to deploy microservice applications due to its
ability to efficiently package microservices by encompassing
all the required libraries and dependencies needed during
runtime. This procedure separated the application from the
underlying infrastructure and enabled developers to run the
application in an isolated environment, ensuring performance
and functionality. As a result, propelled by services such as
Docker, containerization became the preferred approach for
effectively deploying microservices, in contrast to the
traditional virtualization-based approach previously adopted.
However, in the case when the number of microservices of a
particular application increased, it became increasingly
difficult to coordinate, schedule, monitor, and maintain the
required containerized microservices, especially in times
where utmost application performance was required. In
response to this issue, the Kubernetes framework was
introduced in 2014 [3] to allow organizations to run
distributed systems more resiliently by providing effective
solutions for load balancing, storage, orchestration,
automated rollouts, and self-healing mechanisms [4]. The
unique characteristics offered by Kubernetes in this regard,
thereby made it one of the essential microservice-based
technologies available for organizations to deploy their vast
arrays of microservice applications in production-grade
environments.

The introduction of Kubernetes ushered in a new era of
microservice governance through the introduction of
container orchestration. Nevertheless, as evident throughout
this publication, despite its immense use in orchestrating
microservice applications, Kubernetes is still not able to
provide a perfect governance solution to most modern

Gihan Saranga Siriwardhana1, Nishitha De Silva2, Liyanage Sanjaya Jayasinghe3,

Lakshitha Vithanage4, Dharshana Kasthurirathna5

Department of Software Engineering, Sri Lanka Institute of Information Technology,

Malabe, Sri Lanka.
1gihanrcg1997@gmail.com, 2nishithadesilva123@gmail.com, 3sanjayajayasinghe54@gmail.com,

4lmvithanage@gmail.com, 5dharshana.k@sliit.lk

microservice applications, as there are still prevalent issues
that need to be addressed in Kubernetes particularly
concerning the policies followed in the deployment of
interdependent microservices.

A primary reason for the existence of inefficient
optimization policies in Kubernetes based microservice
deployments is the lack of the tools and services to obtain a
holistic view of Kubernetes deployments and thereby
optimize cluster performance. The current tools and services
offered by Kubernetes often have to be pre-configured to the
existing pre-conceived knowledge of the developers in
contrast to the actual real-time utilization. Although
implementing such solutions may be of use in the short term,
it maybe it may be difficult to further improve upon the
performance of the microservice cluster in the long term due
to the lack of a holistic view on the interaction of the
interdependent microservices in real-time use. Hence, it
should be realized that if a particular microservice
deployment is to be optimized for performance, a clear
understanding regarding the relationships among the
interdependent microservices during runtime is required.
However, if a microservice deployment is to be truly
optimized for optimal performance, it may also be necessary
to take into account factors such as the resilience among the
interdependent microservices, the effect of autoscaling in
addition to a clear understanding on the interactions of
interdependent microservices. Regardless, even though there
are several monitoring solutions available for such purposes,
such as Prometheus, Istio, and Chaos toolkit, their disjoint
nature prevents them from allowing users to obtain a holistic
perspective on the state of their deployed microservices.
Furthermore, in cases such as fault management, error
handling, and performance monitoring, due to the disjoint
nature of these monitoring solutions, users are often unable
to gain insight into possible solutions as to why a particular
problem or bottleneck has occurred even though they are
made aware of the presence of a particular problem by these
monitoring solutions.

In addition to the above-mentioned issues, these
monitoring solutions are also often and plagued with other
challenges such as the difficultly in successfully configuring
and integrating these monitoring tools with the existing tools
used by organizations [5]. The issues mentioned above may
also further complicate the already complicated management
and configuration process prevalent in Kubernetes and, in
turn, may confuse inexperienced developers and system
administrators, ultimately leading towards misallocation of
cluster resources and degradation of cluster performance.

In response to the issues stated above, this publication
proposes a novel approach to the creation of a unified
governance model that can be used by developers and system
administrators to effectively oversee the performance of their
microservice deployments factoring in dependency analysis,
load prediction, centrality analysis, and residency evaluation
to determine the optimal placement of microservices and
thereby create an optimized deployment plan for a given
microservice deployment. Thus, through the application of
the proposed governance model, users would be able to
obtain a more holistic view of their deployment, resulting in
a greater understanding of the runtime behavior of the
deployed microservices, thereby enabling greater
optimization possibilities. Through application of the
approach proposed in this publication, the authors wish to
provide key insight to the contribution of a new set of
microservice deployment optimization methodologies, which
factor in the impact of key factors such as dependency among

deployed microservices, autoscaling policies as well as
resilience measures in microservice deployments.

The governance model proposed in this publication is
comprised of four main components, each aimed at capturing
a particular dimension of the microservice deployment with
the ultimate goal of achieving a more holistic view of a given
microservice deployment. Accordingly, the key components
of the proposed model are as follows.

I. A generated microservice co-dependency map

which is aimed at obtaining a clear perspective about
the dependencies between each microservice and the
importance of the deployment plan.

II. A load prediction and centrality analysis component
for the prediction of the level of interdependency
among co-dependent microservices, the resource
utilization of pods in the cluster as well as
performing the task of the calculation of centrality
measures of microservices in the co-dependency
network.

III. A resilience evaluation component to determine the
resiliency of microservices in the cluster.

IV. An optimal placement algorithm to determine the
optimum placement of microservices in the
Kubernetes cluster based on the above stated
predicted loads, resiliency, and centrality measures.

The rest of this publication is organized as follows.
Section Ⅱ discusses the background and the related work
literature referenced in the development of this optimization
model. Section Ⅲ discusses the architecture of the proposed
model, along with an in-depth view of its components.
Section Ⅳ discusses the methodology followed in the
development of the proposed model. Section Ⅴ discusses the
results obtained using the developed model and, finally, the
conclusion of this publication, along with directions for
future work, is outlined in Section Ⅵ.

II. BACKGROUND AND LITERATURE

The apparent need for improved microservice governance
modeling strategies, along with some of the prevalent issues
in current microservice governance methodologies, have
been highlighted in several publications throughout the years.
The authors of [6] highlight the need for new modeling
strategies that capture the recent advances in deployment
technology such as Kubernetes. The publication [7] states the
inability of monitoring frameworks to measure microservice
performance level metrics would lead to the creation of
several new research topics, which include the development
of holistic techniques for collecting and integrating
monitoring data from microservices and datacenter resources.
In contrast, publications such as [1] highlight the use of past
actions and events to better inform resource management
decisions in microservice environments along with the
challenges such as the overloading of monitoring events
faced in resource monitoring and management processes.

In addition, several publications have also proposed
performance modeling strategies for Kubernetes
deployments. In this regard, [8] an architectural approach that
federates Kubernetes clusters using a TOSCA-based cloud
orchestration tool. In contrast, research publications such as
[9] proposed a tool named Terminus to solve the problem of
finding the best-suited resources for the microservice to be
deployed so that the whole application achieves the best

performance while minimizing the resource consumption.
Other researches include the reference net-based model for
pod & container lifecycle in Kubernetes proposed by the
authors of [10] and the generative platform for benchmarking
performance and resilience engineering approaches in
microservice architectures as proposed in [11].

The approaches suggested in the publications stated
above are all approaches that aim at performance
optimization of Kubernetes deployments. However, a key
aspect to note in this regard is the fact that the methodologies
stated in the publications mentioned above, fail to capture
critical dimensions such as the dependent relationships
between microservices, the effect of autoscaling policies,
resiliency to determine the optimal placement of a particular
microservices concerning its global significance. Therefore,
to our knowledge, there is no current solution proposed, that
takes into consideration an integrated modeling strategy,
factoring key elements essential to the optimization of
microservice deployments such as co-dependencies present
as well resilience and centrality measures among
microservices when developing a holistic governance policy
for Kubernetes based microservice deployments, as proposed
in this research.

The governance model proposed in this publication is
primarily aimed at resolving the key issues in present
microservice governance methodologies. Hence, a pre-
requisite knowledge regarding the nature of these issues was
vital in the development of the proposed governance model.
The following sub-sections provide an in-depth insight into
these key issues as well as the methodologies proposed by
fellow publications in the discovery of practical solutions.

A. Microservice Monitoring

Even though Kubernetes and all other tools resolve
various problems and improve the functionality of the
microservices, there are still some issues and performance
bottlenecks either these tools cannot solve, or the tools
introduce. This is evident from previous researches such as
[12] which describes the drawbacks of Kubernetes when it
comes to containerized microservices.

The research conducted by authors such as [13] highlights
the importance of having a monitoring solution to monitor the
workload and the performance of the cluster. In addition,
publications such as [14] describe some of the key challenges
faced in the deployment of microservices and the need for
Application Performances Monitoring tools, especially those
deployed in containers to include additional measures to
monitor microservices such that they could use as input for
resilience mechanisms and creation of auto-scaling policies.

Even though there are numerous researches about
Kubernetes and service mesh, there were negligible
publications considering the dependency between
microservices as a whole. The available publications go on
to describe the auto-deployment facilities of Kubernetes [15];
however, they do not describe how that can affect the network
latency between microservice are deployed automatically in
the available nodes.

In simple terms, the governance model proposed in this

publication will incorporate the calculation of the number of

requests to measure the dependency level between each

microservice by obtaining a quantifiable value, which then

can be used to compare and order the dependency. The

obtained values can be used to generate dependency maps in

service, pod, and workload levels. The implemented system

will use several metric query engines to obtain necessary

metrics regarding hardware aspects of pods, nodes, and the

cluster and develop a collection of APIs to generate necessary

data sources for other components on demand.

B. Rule-based Autoscaling

The decentralized and modular design approach to
microservices entails that workloads across microservices are
dynamic, where at a specific instance of time, a particular
microservice may require the need to face varied workload
intensities compared to its counterpart services. This process
is in contrast to scaling in traditional monolithic applications
in which, during intense workloads, the entire application
stack is scaled, leading to a misallocation of resources.
Therefore, as part of its orchestration policy, the Kubernetes
framework makes use of autoscaling in order to ensure
microservices can adapt to dynamic workload intensities
while allowing resources to be provisioned more
conservatively.

Autoscaling of resources could be achieved through
following a variety of techniques, as stated in [16] however,
the autoscaling process in Kubernetes is primarily achieved
through the use of Horizontal Pod Autoscaler (HPA) and
Vertical Pod Autoscaler (VPA). Although the governance
model proposed in this publication primarily makes use of the
HPA, due to the model being primarily focused on the use of
existing cluster infrastructure, a common characteristic that
these tools possess is the fact that they primarily adopt local
and rule-based auto-scaling techniques to dynamically
manage the number of microservice resources in a particular
deployment.

Rule-based autoscaling involves defining the conditions
under which capacity will be added to or removed from a
cloud-based system, in order to satisfy the objectives of the
application owner [17]. Therefore, for a rule-based
autoscaling approach to be effective, the application provider
has to specify upper and lower bounds, which are usually
defined through a performance metric such as CPU
utilization. This approach to rule-based approach to
autoscaling has therefore defined rule-based autoscaling as a
more reactive approach to provision resources since the
autoscaling process occurs when the defined thresholds and
bounds set, are exceeded. Furthermore, most rule-based
autoscaling policies adapt the MAPE (Monitor, Analyze,
Plan, Execute) control loop reference model used in various
autonomic computing systems. This MAPE reference model
is primarily adopted in orchestration tools such as Kubernetes
in the creation of guidelines of self-adaptive software systems
[18]. However, there are some issues prevalent in the
adaptation of this model, along with the rule-based
autoscaling policies adopted. These include issues ranging
from the lack of adaptability to dynamic workloads faced,
which result in undesirable Quality of Service (QoS) and
reduced resource utilization [18], to issues such as the
response delay faced in resource creation. Moreover, the lack
of autoscaling studies focusing on the service-level of
autoscaling and the use of service level metrics, as well as the
lack of monitoring tools and aggregating metrics at the
platform level and service level to support autoscaling
decisions [19], also manage to aggravate the issues
mentioned above.

In this regard, numerous publications have proposed a
wide array of approaches ranging from proactive autoscaling
through resource prediction, to other approaches such as
performance modeling, in order to combat some of the issues
prevalent in autoscaling process in platforms such as
Kubernetes. Fundamental researches include resource
consumption prediction models such as those proposed by the

authors [20]–[24], approaches to the creation of improved
autoscaling policy as stated in publications such as [25], [26]
as well as improved autoscaling frameworks proposed by
publications such as [27]–[30]. Regardless, it is evident that
even though the solutions for improved autoscaling strategies
proposed by these researches were quite effective, they were
mostly focused on the creation of localized autoscaling
policies without taking int account the overall impact of
globally aware autoscaling policy based on importance and
the optimal placement of microservices, in contrast to the
governance model introduced in this publication.

C. Resilience Evaluation

Failures are inevitable; even the most robust platforms
with concrete operations infrastructure could face outages in
production when the system’s threshold to withstand
turbulent conditions go out of control. There is no single
reason why a system fails, and it is not possible to
immediately address a failure without prior knowledge on
why and when that specific failure might occur, the same
implies to the widely used Kubernetes platform. Even when
all of the individual services in a Kubernetes environment are
functioning correctly, the interactions between those services
can cause unpredictable outcomes [31].

The concept of chaos engineering was brought up by
Netflix to identify its system flaws. Failure injection testing
laid the foundation for the emergence of tools such as chaos
monkey, chaos toolkit, which allows users to inject failures
carefully to the system and examine the behavior [32]. With
the use of Kubernetes for microservice deployments, it
provided a friendly environment towards chaos engineering
practices as it provided native features for resiliency [33].
Regardless, publications such [6] describe some of the critical
challenges faced in the deployment of microservices and the
need for APM tools, especially those deployed in containers
to include additional measures to monitor microservices such
that they could be used as input for resilience mechanisms
and creation of auto-scaling policies.

When analyzing the optimal deployments of
microservices, the fact that resiliency has not been considered
as an essential factor [34], Even though fault tolerance and
resiliency evaluations have been performed on microservices,
the results obtained are only used in the identification of the
weaknesses of the system. Resilience evaluation is therefore
vital in the determination of critical services in microservice
deployment and aid in providing key insight into the
determination of optimized deployment strategies.

D. Optimal Microservice Placement

Although the deployment process of containerized
microservices in Kubernetes allows functionalities such as
scheduling deployments and autoscaling, the capability to
determine the optimal placement of microservices in the
deployment of containers does not exist. In fact, Kubernetes
is unable to determine the optimal placement for the
deployment of containers unless explicitly configured.
Furthermore, deploying an application without consideration
of dependencies may result in low application performance.
Besides, tools such as HPA, which perform real-time
autoscaling, also do not consider the effect of dependent
services in the determination of the optimum number of
instances.

There have been few pieces of research conducted related
to microservices optimal deployment, which give
prominence to optimal microservice placement. The research
conducted by the authors of [35] propose a solution for
determining the optimal microservice placement in

microservices through analysis of historical values and
microservice dependencies, similar to that proposed in this
publication; however, the research conducted does not take
into consideration key factors such as the inter-node latency
between nodes in the cluster as wells as the inclusion of
measures such as resilience and centrality evaluation, and
although the approach suggested in the research makes use of
historical data in the determination of microservice
placement it does not make use of the historical data to make
effective prediction mechanisms using the gathered historical
data to adapt to changes that may affect future placement
decisions.

III. PROPOSED MODEL

As previously stated, the proposed governance model is
primarily comprised of four primary components, each aimed
at capturing a particular dimension of a given microservice
deployment. Fig. 1, given below, depicts a high-level view of
the core components of the proposed governance model.

Fig. 1. Key components of the proposed governance model

A. Microservice Co-dependency Network

Fig. 2. High-level diagram of components utilized in the creation of the co-

dependency network

The microservice co-dependency network component is
developed through the combination of the three sub-
components as depicted in Fig.2 above.

a. An Istio service mesh platform that incorporates

Kiali and Prometheus monitoring solutions.

b. A backend Node server for integration with metric
APIs provided by monitoring solutions.

c. A database solution for the storage of gathered
metric data.

Istio is an open-source service mesh platform that can be
used to monitor and control the behavior of microservices
when it comes to sharing data with one another [36]. Istio is
thereby be configured on top of the Kubernetes environment
to facilitate the creation of the dependency map.

The proposed model will make use of the services and
APIs that Istio provides to develop a backend server to query
metrics from the Kubernetes cluster. Based on those metrics,
the proposed model makes use of a generated dependency
map that is utilized to get a holistic perspective of the
microservice network. Also, the collected metrics from the
cluster is stored in the configured database solution to
facilitate the creation of load-based prediction models, as
highlighted in the sections below. Furthermore, the proposed
model is able to generate a set of YAML files [37] based on
the optimal deployment plan and administer the generated
YAML files to the cluster with the consent of the user.

B. Load prediction and Centrality Analysis

Fig. 3. High-level diagram of load prediction and centrality analysis

component

The load prediction component and centrality analysis
component are primarily responsible for performing the
following essential tasks, as depicted in Fig. 3 above.

• Prediction of future resource utilization values
(primarily CPU and memory) based on historical pod
resource utilization data.

• Prediction of inter-microservice link weight
(dependency measures), based on historical link
weight data derived from the load based metrics in the
co-dependency network.

• Calculation of centrality measures of microservices in
the co-dependency network.

The resource utilization prediction process is performed
through performing a time series-based prediction on pod
utilization metrics, in which predicted CPU and memory
utilization values for a particular period are forecasted.
Furthermore, the prediction process for resource utilization is
performed through the application of a Short-Term Long
Memory (LSTM) network in which a particular number of
time steps of utilization metrics are used to predict future
utilization values. Here, the LSTM model has been chosen
as the preferred prediction model due to its inherent ability to
learn long term dependencies with a high degree of accuracy
compared to similar time series prediction models. Once
predictions are made, the predicted utilization values for a
particular period (e.g. - 24 hours in advance) are passed
through to the optimization algorithm to infer autoscaling
decisions.

The process of inter-microservice link weight prediction
is primarily a network-based time-series prediction in which
the inter microservice link weights derived through load
based metrics, as described in the previous section, are
forecasted such that the next predicted weight for the links in
the co-dependency map is determined. The forecasted
weights determined through the use of an LSTM prediction
model could then be used to provide an accurate estimation
of the load that is expected to be received by microservices in
the cluster, enabling the identification of key potential
microservices which may in turn, highly manipulate
microservice placement decisions and the realization of
optimal cluster performance

Calculation of microservice centrality measures will also
be performed within the load prediction component. Here, the
microservices in the co-dependency network are evaluated on
several centrality measures to facilitate the identification of
influential microservices in the cluster. These calculated
centrality measures are then sent to the optimization
algorithm as inputs, to infer autoscaling decision through
determination of required service instance levels. In this
regard, the proposed governance model is expected to make
use of the key centrality measures such as degree,
betweenness, closeness as well as eigenvector centrality
measures to facilitate the identification process of influential
microservices.

 (1)

 (2)

C. Resiliency Evaluation

Fig. 4. High-level diagram of resilience evaluation component

The resilience evaluation component is particularly based
on chaos engineering principles. Utilizing the co-dependency
network, most prominent nodes will be targeted for
conducting chaos experiments. In short, this component will
primarily be responsible for performing chaos experiments to
identify system weaknesses as depicted in Fig.4 above.

Identifying system weaknesses is done using a chaos
experimenting tool referred to as chaos toolkit. Here, a set of
actions is performed on each node in order to examine how
the system behaves according to the changes performed. For
instance, a selected pod is terminated using the “terminate
pod” action, and the system is examined to see whether the
system remains available or the other services remain
healthy. Furthermore, by using chaos toolkit extensions such
as Istio Fault Injection, delays can be created to investigate
how the system responds.

To obtain metrics such as CPU usage, disk space, and
bandwidth, we could use the chaos toolkit-Prometheus
extension. With the use of this extension, the above-
mentioned metrics can be extracted while applying different
conditions to the system. Moreover, various experiments are
done to create different conditions for the system such that
the resilience of the system can be determined precisely.

D. Optimization Algorithm

The optimization algorithm utilized in the proposed
governance model is predominantly based on the NSGA-Ⅱ
(Non-Dominant Sorting Genetic Algorithm) algorithm. The
algorithm generates a multitude of optimized solutions that
enables the user to infer optimization decisions predicated on
three key optimization categories, which are as follows.

• Solutions optimized for best performance and
availability, thereby maintaining a balance between
reduced latency and number of instances.

• Solutions optimized for optimal performance based
on the reduction of latency.

• Solutions optimized for highest availability based
on the maximization of the number of instances.

These optimized solutions are generated following four
main input parameters utilized by the optimization algorithm.

1. Predicted microservice dependency measures from
the load prediction and centrality analysis
component.

2. Node latency map generated from the Node Server.

3. Required number of microservice instances derived
from centrality measures and predicted resource
utilization metrics from the load prediction and
centrality analysis component.

4. General cluster infrastructure information gathered
from monitoring solutions.

The sub-sections below provide an in-depth insight into
the manner these input parameters are utilized in the
developed algorithm as well as their impact on the creation of
holistic optimization policies.

I. Predicted Microservice Dependency Measures

In microservice deployments, although factors such as
latency cannot be completely eliminated, dependent
microservices can be deployed in nearby nodes or the same
node in order to reduce the overall latency of an application.
Therefore, making use of this approach while intending to
solve low availability and sub-optimal performance issues, as
well as to aid in the creation of autoscaling policies, the
developed optimization algorithm makes use of the predicted
load-based link weights obtained from the load prediction
component. This is done such that optimal placement and
scaling decisions could be performed ahead of time,
establishing a future deployment strategy such that users such
as DevOps engineers would be able to make use of the
gathered information to create an optimized microservice
deployment plan. In addition, making use of the predicted
dependency measures (load-based link weight), optimal
placement decisions are determined through the application
of formula (1) and (2), as defined below, which calculates the
average latency among the microservice instances, based on
the dependency measures and as the node latency map
obtained from the Node server.

TABLE I. AVERAGE LATENCY CALCULATION

n Number of dependencies in pod-

level

m Number of dependency links in

app-level

W Dependency request weight in app-

level

L The latency of dependency in pod-

level

D Dependency average latency in

app-level

TL Total latency

 𝐷𝑗 =
∑ 𝐿𝑖

𝑖=𝑚
𝑗=1

𝑛

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐿 = ∑ 𝑊𝑗 × 𝐷𝑗

𝑗=𝑚

𝑗=1

II. Node Latency Measures

The main objective of the optimization algorithm is the
maximization of performance through the minimization of
latency among microservices. Therefore, the developed
optimization algorithm also utilizes a developed node latency
map obtained from the Node Server, to evaluate the fitness of
generated solutions.

III. Required Microservice Instances

In the process of fitness calculation, the first step is the
calculation of the required number of instances per
microservices. Here, the calculation of the required number
of microservices instances is performed by utilizing the
predicted resource utilization values derived from the load
prediction component, applied on the Horizontal Pod
Autoscaling algorithm. Also, the centrality measures derived
from the co-dependency network will be utilized to infer the
optimum microservice instance levels, particularly in cases
where historical information of the cluster is unknown. The
required microservice instance levels are also utilized in
availability fitness calculation measures, aided through the
use of a generalized logistic function [38] to avoid giving
high scoring fitness values from resources that require low
resource consumption and are of low instance levels, thereby
establishing a fairer scoring method. In this regard, the fitness
is calculated as defined through the formula (3) given below.

TABLE II. FITNESS CALCULATION

R Required instances for each service

S The current number of instances in

each service

TA Availability fitness

n Number of microservices

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇𝐴 =

 ∑ 𝑅𝑖 × 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (
𝑆𝑖

𝑅𝑖
)𝑖=𝑛

𝑖=1 (3)

The fitness function also makes use of a scoring system

based on the distribution of the number of instances deployed
on cluster node resources known as the scale value. In this
regard, a higher number of instances distributed among
cluster nodes throughout the deployment are given a higher
score than localized instances deployed within a single node.
This task is performed to avoid convergence of dependent
services into one node and affecting availability. These scale
values are then utilized to infer performance and availability
decisions.

IV. General Cluster Information

The optimization algorithm also makes use of the general
cluster infrastructure information such as the resource power
consumption of nodes and node labels names. The
information gathered in this regard is primarily utilized in the
definition of constraints utilized by the optimization
algorithm.

IV. METHODOLOGY

Fig. 5 below presents an overview of the implemented
governance model along with its key components.

Fig. 5. Overview of the implemented solution

A. Developing the Microservice Co-dependency Map

This component primarily queries metrics from a
Kubernetes cluster and saves the gathered metrics in order to
create a dataset such that it could be used to build a co-
dependency network. As previously stated, the Istio service
mesh is installed and configured in order to get data from the
cluster, in the app, pod, and node levels. Istio also comes with
a set of pre-installed services. In this regard, Kiali,
Prometheus, and Jaeger are some of the primary services
utilized in the development process of this component.
Grafana is also configured using Prometheus as a data source.
Each of these services exposes APIs that can be used to gather
information via HTTP requests. Also, Kubernetes itself
exposes an API that can be used to query data about the
cluster and the environment.

A Node server is also developed to combine all these APIs

to query metrics from a single endpoint. Node JS is used as

the development framework for this server in order to

maintain the necessary speed and flexibility required. The

server can be configured to query metrics and trigger the

process based on a scheduler. The default option will is to run

the process once every three hours. The collected metrics are

then stored in a No SQL database to maintain simplicity. In

addition, a timestamp is stored with every record to create a

time series dataset that will be used in training machine

learning models for more accurate results. The developed

Node server is also capable of generating CSV (Comma

Separated Values) files on demand of the other components

by reading the above stated No SQL database. The server will

also expose an endpoint that can be accessed via an HTTP

request in order to trigger required functions on demand. All

the data stored in the database is maintained within the same

Kubernetes cluster without exposing it to the public in order

to maintain the privacy of user data. Lastly, in addition to the

above, the Node server is also responsible for the creation of

a node latency map through evaluating the latencies between

the nodes in the cluster. Here, the Round-Trip Time (RTT) of

network calls between nodes in the cluster is evaluated and,

through the use of a developed shell script, the average

latency measures between cluster nodes are obtained and

forwarded to the optimization algorithm.
As mentioned earlier, one of the critical components,

which is the generation of the microservice dependency map,
will be done by using Kiali to record the requests and
responses between each service for a specified period. That
measurement can then be divided by the time to quantify the
dependency level. The generated CSV files and the quantified
dependency map is then used as inputs in all other
components in this research. Furthermore, the dependency
map is displayed in the final dashboard to provide a more
holistic view of the microservice network to the user.

As the server developed in this component has a direct
connection with the Kubernetes cluster, the optimal
deployment plans, which are given to the optimization
algorithm component of this research, are used to generate a
set of YAML files that can be applied to the cluster directly
in order to change the deployment plan of the cluster. This
will not be an automated process, and the user will be given
a choice to apply these deployment changes to the cluster or
not.

B. Developing the Load Prediction and Centrality Analysis

Component

As previously stated, this component is primarily
developed for the prediction of load-based link weights,
prediction resource utilization metrics, as well as the
calculation of centrality measures on the developed co-
dependency network. Thereby, a key objective of this
component is the utilization of historical data and centrality
measures to aid in the optimization of microservice
deployments and the creation of holistic autoscaling policies.

The entirety of the above-stated tasks is performed
through the use of the Python programming language mainly
due to its immense flexibility and adaptability that supports
data augmentation along with the provision of added benefits
such as the presence of a mature, well-developed collection
of libraries that facilitate enhanced machine learning and
deep learning-based programming functionalities. Hence, the
LSTM prediction model employed for the resource utilization
prediction and link-weight prediction purposes in this
component is primarily developed through the utilization of
Keras and TensorFlow python libraries. In contrast, the
NetworkX python library is utilized for the calculation of
centrality measures on the co-dependency network.

For the prediction process, a time series-based approach
is adopted to acquire the knowledge present in historical data.
Therefore, an LSTM prediction model is utilized for this
purpose. Furthermore, since the prediction of time series-
based values using LSTM models requires a data-science
based approach to obtain the expected predictions, a pre-
requisite data manipulation process is required to be
performed to obtain the most accurate prediction results. Fig.
6, below depicts the process followed in the prediction of
resource utilization metrics, whereas Fig. 7 given below
depicts the process followed in the prediction process for
inter microservice-link weights.

Fig. 6. Prediction process for resource utilization

Fig. 7. Prediction process for inter microservice link weight (dependency)

The process of the calculation of centrality is also
performed through a data science-based approach in which a
CSV containing microservice-link data generated from the
Node Server is utilized in the process of centrality
calculation. Fig. 8 given below depicts the process followed
in the calculation of centrality measures of microservices in
the co-dependency network.

Fig. 8. The process followed in the calculation of centrality measures

C. Developing the Resilience Evaluation Component

As noted earlier, this component mainly focuses on
evaluating the resilience level of the system. The process is
performed under the principles of chaos engineering which
are as follows.

1. Building a hypothesis around steady-state behavior

2. Vary real-world events

3. Run experiments in production

4. Automate experiments to run continuously

5. Minimize blast radius

 The main tool used for conducting these experiments is
the chaos toolkit. Experiments are scripted in JSON or
YAML formats, in which various actions and probes are
defined to create different conditions in the system. A python
virtual environment is used to host the chaos toolkit and after
the configuration of the Kubernetes context, the chaos
experiments are executed by running the scripts. The outputs
of these experiments are configured as needed to exploit the
needed metrics, and the results are generated as CSV or pdf
files.

D. Developing the Optimization Algorithm

The entirety of the development of the NSGA-Ⅱ based
optimization algorithm is performed through the use of the
Python code scripting. Fig. 9 given below depicts an
overview of the process utilized by the optimization
algorithm in the determination of optimal solutions.

Fig. 9. Overview of the optimization algorithm

As depicted in Fig. 9, once all input parameters are
retrieved by the optimization algorithm, the first step in the
process is the generation of the initial population. Here, the
initial population is generated through the use of a random
number generator which inserts data into a pre-defined two-
dimensional array in which the microservice instances and
their respective nodes are represented by the row and

columns respectively. Fig. 10 depicts a sample overview of
the structure of the generated two-dimensional array.

Fig. 10. Overview of the structure of the generated two-dimensional array

After the creation of the initial population, constraints are
applied to the initial population to eliminate the invalid
solutions generated. Next, fitness is computed from the
remaining solutions and the superior parent chromosomes are
selected based on the evaluated fitness measures. The
selected parent chromosomes are then ranked using non-
dominant sorting, and crowding distance measures and the
highest-ranked parent chromosomes are utilized for
crossover. The above-described process is then run iteratively
until the maximum generation count is reached. Lastly, the
solutions obtained through the above-described process are
then saved in a python data frame such that the optimized
solutions based on three key optimization categories, as
stated in the previous section, could be retrieved when
needed.

V. RESULTS AND DISCUSSION

The developed optimization model was evaluated on a
sample microservice cluster dataset containing 3 nodes and 6
microservices. For evaluation purposes, the JSON
(JavaScript Object Notation) representation of this cluster
dataset, along with the additional information required by the
optimization algorithm which includes the node latency map,
predicted inter-microservice dependency measures as well as
the required number of microservice instances, is provided to
the developed optimization algorithm in order to compute the
optimized solutions. Fig.11 below depicts the structure of the
sample input JSON provided to the optimization algorithm.

Fig. 11. Structure of sample JSON provided as input to the developed

optimization algorithm

Once the optimization algorithm is executed, a set of
optimized solutions are obtained. In this regard, two
optimized solutions are obtained once the algorithm is
executed; one solution represents the cluster orientation with
the highest cluster performance as depicted in Fig.12,
whereas the second solution obtained depicts the solution that
represents the cluster orientation with the highest cluster

availability as depicted in Fig.13. For added clarification, the
tabular format of the representation is given alongside the
resulting solutions.

Fig. 12. Resulting solution representing cluster orientation with the highest

performance

Fig. 13. Resulting solution representing cluster orientation with the highest

availability

Note the fact that in the tabular format depicted in Fig. 12
and Fig. 13, each cell in the table represents the optimal
number of instances of a given microservice that should be
present in order to achieve the required optimization goal
(highest performance or highest availability).

With regard to the resulting solution obtained that
represents the cluster orientation with the highest
performance, the fact that the optimization algorithm has
successfully managed to determine the cluster orientation
with the highest performance is evident mainly due to the fact
that the highest dependent services as provided in the input
JSON have been determined to be placed on the same node
by the optimization algorithm. This fact is determined
through comparing the keys of the key-value pair sets in the
“pod_dependency_map” feature of the input JSON which
represents inter-dependent sets of microservices (For
example: - “ [0, 2]: 1000 ” in the input JSON represents
microservice M0 and microservice M2 are inter-dependent
microservices with a dependency level of 1000), with the

tabular representation of the resulting optimal performance
solution, that also depicts the inter-dependent microservices
as described in the input JSON (such as M0 and M2) placed
on the same node.

Similarly, through comparing the
“microservices_instances_requirement” feature of input
JSON which represents the required number of instances
required for each of the six microservices respectively, with
the resulting instance levels obtained from resulting highest
availability solution, it is evident that the optimization
algorithm has also ensured highest availability of
microservices through the allocation of a higher number of
microservice instances than the required instances. (For
example - Microservice M0 requires the presence 4 instances
and optimization algorithm has allocated 8 instances of M0
as determined through its optimization process)

VI. CONCLUSION

This publication suggests the application of a network-
science based microservice governance model in an attempt
to aid in the creation of optimized microservice deployment
policies currently hindered due to the employment of disjoint
monitoring solutions prevalent in microservice-based
governance methodologies that fail to portray a holistic
perspective regarding the status of microservice
deployments. In this regard, the proposed model seeks the
creation of a holistic perspective of microservice
deployments, through the incorporation of dependency
analysis, load prediction measures, centrality measures as
well as resilience measures. Furthermore, through the
incorporation of the above measures, the research conducted
utilizes the application of an optimization algorithm to
determine an optimal deployment strategy for a given
microservice deployment.

The publication also discusses the core architecture along
with the methodologies followed in the development of the
proposed governance model as well as the results obtained
through the application of the proposed governance model.
Analysis of the results suggests the developed governance
model proved to be effective in determining the optimized
cluster representations pertaining to the highest performance
and availability. However, current research suggests
considering the inner workings of applications deployed in a
Kubernetes cluster so as to increase the accuracy of the
prediction models and resiliency analysis components such
that more optimized deployment policies can be established.

ACKNOWLEDGMENT

Gihan Siriwardhana, Nishitha De Silva, Sanjaya Jayasinghe,

Lakshitha Vithanage would like to thank the Sri Lanka

Institute of Information Technology (SLIIT) and the

Department of Software Engineering for providing the

opportunity to conduct this research as well as Dr. Dharshana

Kasthurirahtna for guiding and inspiring the development of

this research.

REFERENCES

[1] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov,
“Microservices: The journey so far and challenges ahead,” IEEE
Software, vol. 35, no. 3, pp. 24–35, 2018, doi:
10.1109/MS.2018.2141039.

[2] “Microservices Governance: A Detailed Guide.”
https://www.leanix.net/en/blog/microservices-governance (accessed
Jun. 16, 2020).

[3] “Kubernetes. – Wikipedia.” https://en.wikipedia.org/wiki/Kubernetes.
(accessed Jun. 16, 2020).

[4] “What is Kubernetes? | Kubernetes.”
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
(accessed Jun. 16, 2020).

[5] “Kubernetes: The Challenge of Deploying & Maintaining.”
https://techolution.com/kubernetes-challenges/ (accessed Jun. 16,
2020).

[6] R. Heinrich et al., “Performance engineering for microservices:
Research challenges & directions,” ICPE 2017 – Companion of the
2017 ACM/SPEC International Conference on Performance
Engineering, pp. 223–226, 2017, doi: 10.1145/3053600.3053653.

[7] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open
Issues in Scheduling Microservices in the Cloud,” IEEE Cloud
Computing, vol. 3, no. 5, pp. 81–88, 2016, doi:
10.1109/MCC.2016.112.

[8] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, “TOSCA-based
and federation-aware cloud orchestration for Kubernetes container
platform,” Applied Sciences (Switzerland), vol. 9, no. 1, 2019, doi:
10.3390/app9010191.

[9] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” ICPE 2019 – Proceedings of the
2019 ACM/SPEC International Conference on Performance
Engineering, pp. 25–32, 2019, doi: 10.1145/3297663.3310309.

[10] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui, “Modelling
performance & resource management in Kubernetes,” Proceedings –
9th IEEE/ACM International Conference on Utility and Cloud
Computing, UCC 2016, pp. 257–262, 2016, doi:
10.1145/2996890.3007869.

[11] T. F. Düllmann and A. van Hoorn, “Model-driven generation of
microservice architectures for benchmarking performance & resilience
engineering approaches,” ICPE 2017 – Companion of the 2017
ACM/SPEC International Conference on Performance Engineering,
pp. 171–172, 2017, doi: 10.1145/3053600.3053627.

[12] A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate,
“Techniques to Secure Data on Cloud: Docker Swarm or Kubernetes?,”
Proceedings of the International Conference on Inventive
Communication and Computational Technologies, ICICCT 2018, no.
Icicct, pp. 7–12, 2018, doi: 10.1109/ICICCT.2018.8473104.

[13] “Comprehensive Container-Based Service Monitoring with
Kubernetes and Istio | Circonus.”
https://www.circonus.com/2018/06/comprehensive-container-based-
service-monitoring-with-kubernetes-and-istio/ (accessed Jul. 13,
2020).

[14] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service Mesh:
Challenges, state of the art, and future research opportunities,”
Proceedings – 13th IEEE International Conference on Service-Oriented
System Engineering, SOSE 2019, 10th International Workshop on
Joint Cloud Computing, JCC 2019 and 2019 IEEE International
Workshop on Cloud Computing in Robotic Systems, CCRS 2019, pp.
122–127, 2019, doi: 10.1109/SOSE.2019.00026.

[15] “One year using Kubernetes in production: Lessons learned.”
https://techbeacon.com/devops/one-year-using-kubernetes-
production-lessons-learned (accessed Jul. 13, 2020).

[16] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-scaling
of web applications in cloud: Survey, trends and future directions,”
Scalable Computing, vol. 20, no. 2, pp. 399–432, 2019, doi:
10.12694/scpe.v20i2.1537.

[17] A. Evangelidis, D. Parker, and R. Bahsoon, “Performance modelling
and verification of cloud-based auto-scaling policies,” Future
Generation Computer Systems, vol. 87, pp. 629–638, 2018, doi:
10.1016/j.future.2017.12.047.

[18] S. Taherizadeh and M. Grobelnik, “Key influencing factors of the
Kubernetes auto-scaler for computing-intensive microservice-native
cloud-based applications,” Advances in Engineering Software, vol.
140, no. September 2019, p. 102734, 2020, doi:
10.1016/j.advengsoft.2019.102734.

[19] A. Hanieh, L. Yan, and H.-L. Abdelwahab, “Analyzing Auto-scaling
Issues in Cloud Environments,” Proceedings of 24th Annual
International Conference on Computer Science and Software
Engineering. IBM Corp., no. January, pp. 75–89, 2014.

[20] A. Zhao, Q. Huang, Y. Huang, L. Zou, Z. Chen, and J. Song, “Research
on Resource Prediction Model Based on Kubernetes Container Auto-

scaling Technology,” IOP Conference Series: Materials Science and
Engineering, vol. 569, no. 5, 2019, doi: 10.1088/1757-
899X/569/5/052092.

[21] H. Zhao, H. Lim, M. Hanif, and C. Lee, “Predictive Container Auto-
Scaling for Cloud-Native Applications,” ICTC 2019 – 10th
International Conference on ICT Convergence: ICT Convergence
Leading the Autonomous Future, pp. 1280–1282, 2019, doi:
10.1109/ICTC46691.2019.8939932.

[22] Y. Meng, R. Rao, X. Zhang, and P. Hong, “CRUPA: A container
resource utilization prediction algorithm for auto-scaling based on time
series analysis,” PIC 2016 – Proceedings of the 2016 IEEE
International Conference on Progress in Informatics and Computing,
pp. 468–472, 2017, doi: 10.1109/PIC.2016.7949546.

[23] W. Y. Kim, J. S. Lee, and E. N. Huh, “Study on proactive auto scaling
for instance through the prediction of network traffic on the container
environment,” Proceedings of the 11th International Conference on
Ubiquitous Information Management and Communication, IMCOM
2017, 2017, doi: 10.1145/3022227.3022243.

[24] T. Ye, X. Guangtao, Q. Shiyou, and L. Minglu, “An Auto-Scaling
Framework for Containerized Elastic Applications,” Proceedings –
2017 3rd International Conference on Big Data Computing and
Communications, BigCom 2017, pp. 422–430, 2017, doi:
10.1109/BIGCOM.2017.40.

[25] S. Taherizadeh and V. Stankovski, “Dynamic multi-level auto-scaling
rules for containerized applications,” Computer Journal, vol. 62, no. 2,
pp. 174–197, 2019, doi: 10.1093/comjnl/bxy043.

[26] J. Sahni and D. P. Vidyarthi, “Heterogeneity-aware adaptive auto-
scaling heuristic for improved QoS and resource usage in cloud
environments,” Computing, vol. 99, no. 4, pp. 351–381, 2017, doi:
10.1007/s00607-016-0530-9.

[27] Z. A. Al-Sharif, Y. Jararweh, A. Al-Dahoud, and L. M. Alawneh,
“ACCRS: autonomic based cloud computing resource scaling,” Cluster
Computing, vol. 20, no. 3, pp. 2479–2488, 2017, doi: 10.1007/s10586-
016-0682-6.

[28] P. P. Kukade and G. Kale, “Auto-Scaling of Micro-Services Using
Containerization,” International Journal of Science and Research
(IJSR), vol. 4, no. 9, pp. 1960–1964, 2013.

[29] C. Kan, “DoCloud: An elastic cloud platform for Web applications
based on Docker,” International Conference on Advanced
Communication Technology, ICACT, vol. 2016-March, pp. 478–483,
2016, doi: 10.1109/ICACT.2016.7423440.

[30] L. R. Moore, K. Bean, and T. Ellahi, “A Coordinated Reactive and
Predictive Approach to Cloud Elasticity,” CLOUD COMPUTING
2013, The Fourth International Conference on Cloud Computing,
GRIDs, and Virtualization, no. c, pp. 87–92, 2013.

[31] “Improving Kubernetes Resiliency with Chaos Engineering | by Gokul
Chandra | FAUN | Medium.” https://medium.com/faun/failures-are-
inevitable-even-a-strongest-platform-with-concrete-operations-
infrastructure-can-7d0c016430c6 (accessed Jul. 13, 2020).

[32] “Chaos engineering – O’Reilly.”
https://www.oreilly.com/content/chaos-engineering/ (accessed Jul. 13,
2020).

[33] “How chaos engineering will guarantee the resilience of your services
– eldermoraes.com.” https://eldermoraes.com/how-chaos-engineering-
will-guarantee-the-resilience-of-your-services/ (accessed Jul. 13,
2020).

[34] H. F. E. B, S. Gerasimou, and A. Sen, DeepFault : Fault Localization,
vol. 1, no. 2. Springer International Publishing, 2019.

[35] A. R. Sampaio, J. Rubin, I. Beschastnikh, and N. S. Rosa, “Improving
microservice-based applications with runtime placement adaptation,”
Journal of Internet Services and Applications, vol. 10, no. 1, 2019, doi:
10.1186/s13174-019-0104-0.

[36] “What is Istio?”
https://www.redhat.com/en/topics/microservices/what-is-istio
(accessed Jul. 15, 2020).

[37] “Introduction to YAML: Creating a Kubernetes deployment |
Mirantis.” https://www.mirantis.com/blog/introduction-to-yaml-
creating-a-kubernetes-deployment/ (accessed Jul. 15, 2020).

[38] “Generalised logistic function – Wikipedia.”
https://en.wikipedia.org/wiki/Generalised_logistic_function (accessed
Jul. 14, 2020).

