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Abstract 

 

One of the many advantages of using Kubernetes for microservice deployments is the ability 

to scale cluster resources based on traffic. This ability of Kubernetes to automatically scale 

cluster resources thereby enables developers and system administrators to reduce costs and 

make use of their deployed microservices more effectively and efficiently. 

However, even though the autoscaling tools such as the Horizontal Pod Autoscaler (HPA) 

provided by Kubernetes help developers and system administrators to effectively utilize their 

microservice deployments as previously stated, they also possess some inherent drawbacks 

as well. The main drawback among them being that these autoscaling policies adopted are 

primarily local and rule-based auto-scaling techniques which do not consider the overall 

impact of the auto-scaling policy in order to truly optimize the existing resources in a 

particular deployment. 

This research thereby aims to address this issue prevalent through aiming to provide a data 

science-based approach with the help of statistical and machine learning-based time series 

prediction measures to predict the load of microservice and thereby evaluate and determine 

centrality, based on identified dependency measurements to ultimately develop an improved 

auto-scaling policy which takes into account the global importance of a particular 

microservice. 

 

Keywords: Auto-scaling, Kubernetes, Machine Learning, Microservices, Time Series 
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1.0 INTRODUCTION  

 

Kubernetes has become one of the most popular platforms for deploying 

microservices today, due to its ability to manage and orchestrate containerized 

workloads and services. The use of Kubernetes has therefore enabled developers the 

ability to move on from the traditional deployment methodologies such as physical 

servers and Virtual Machines and make use of the newer containerized deployment 

methodologies through the use of open-source tools such as Docker. Furthermore, 

since Kubernetes provides a vast array of features and services such as service 

discovery and load balancing, storage orchestration, self-healing, etc. [1], it has 

managed to become one of the leading container orchestration tools currently 

available. 

Among the many services and that Kubernetes offers among its vast array of 

features, is the ability to automatically scale based on workloads. This process is 

known as autoscaling and refers to the automatic scaling of computational resources 

based on the required workloads. This autoscaling feature thereby enables developers 

to make use of optimal use resources while minimizing the incurred cost. 

However, the above-mentioned autoscaling feature primarily adopts local and rule-

based auto-scaling techniques to dynamically manage the number of microservice 

resources in a particular deployment. These rule-based techniques make use of a 

limited amount of infrastructure-level metrics such as CPU utilization to determine 

thresholds for autoscaling policies. However, doing so creates a lack of global 

awareness when making effective autoscaling decisions due to the use of a limited 

amount of metrics considered in autoscaling processes which in turn, may cause 

under or over-provisioning of resources and ultimately result in ineffective 

autoscaling. Therefore, in order to truly optimally utilize the existing resources in a 

microservice-based deployment, it may be necessary to have a global view of how 

each microservice is utilized. 
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This research aims to develop a solution to the above-described problem by aiming 

to adopt a data-science based approach with the use of statistical or machine 

learning-based time series prediction measures to develop an algorithm to predict 

future loads and thereby use these predicted loads to evaluate the centrality of a 

particular microservice, in order to produce a more effective autoscaling policy based 

on the global importance of a microservice. 
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1.1 Background and Literature  

 

According to popular cloud providers such as AWS, auto-scaling is defined as a 

cloud computing service feature that allows AWS users to automatically launch or 

terminate virtual instances based on defined policies, health status checks, and 

schedules [2] whereas other publications such as [3] define autoscaling as a 

mechanism of dynamically acquiring or releasing resources to meet QoS 

requirements. However, one of the most in-depth descriptions of the definition of 

autoscaling is provided by the publication [4]. This publication clearly manages to 

summarize the key features of autoscaling, which can be listed as follows. 

• Ability to scale out (addition of extra unused resources during increased 

demand) and scale in (removal of extra unused resources during reduced 

demand) 

• Capability of setting rules for scaling in and out 

• Automatically detect and remove unhealthy instances 

Due to these features, autoscaling is widely adopted in a variety of cloud platforms as 

well in other technologies to scale a wide variety of resources ranging from VMs to 

other resources such as pods in orchestration tools such as Kubernetes. Additionally, 

due to the elastic nature which allows resources to be provisioned more 

conservatively, cloud providers can serve more customers with the same 

infrastructure. 

Furthermore, the autoscaling process for the resources mentioned above can be 

performed using a variety of techniques, as described in [5]. However, among them, 

rule-based autoscaling is the technique most commonly used by many cloud vendors 

today [6] as well as in other orchestration platforms such as Kubernetes, evident 

through its HPA and VPA autoscaling tools. 

Rule-based autoscaling involves defining the conditions under which capacity will be 

added to or removed from a cloud-based system, in order to satisfy the objectives of 

the application owner [6]. Therefore, for a rule-based autoscaling approach to be 

effective, the application provider has to specify upper and lower bounds, which are 
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usually defined through a performance metric such as CPU utilization. This approach 

to rule-based approach to autoscaling has therefore defined rule-based autoscaling as 

a more reactive approach to provision resources since the autoscaling process occurs 

when the defined thresholds and bounds set, are exceeded. 

Another key characteristic that is present in most rule-based autoscaling policies is 

the adaptation of the MAPE (Monitor, Analyze, Plan, and Execute) control loop 

reference model used in various autonomic computing systems. This is reference 

model is primarily adopted in orchestration tools such as Kubernetes in the creation 

of guidelines of self-adaptive software systems [7]. 

 

Figure 1.1 MAPE Control Loop [5] 

However, there are some issues prevalent in the adaptation of this model along with 

the rule-based autoscaling policies adopted. These include issues ranging from the 

lack of adaptability to dynamic workloads faced, which result in under or over-

provisioning of resources and loss in the QoS, to issues such as the response delay 

faced in resource creation. As a result, throughout the years, various research 

publications have proposed numerous approaches ranging from proactive autoscaling 

through resource prediction to other approaches such as performance modeling, in 

order to combat these prevalent issues. 

Therefore, before moving on with the implementation of this research, it is vital a 

thorough analysis is conducted on some of the existing research carried out in order 

to solve some of the current issues found these local and rule-based (reactive) 
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autoscaling policies adopted in Kubernetes as well as other similar autoscaling 

technologies.  

The research conducted by A. Zhao and his team [8], uses a resource prediction 

model based on Kubernetes container auto-scaling technology and makes use of a 

combination of ARIMA model as well as Empirical Mode Decomposition (EMD) to 

predict the resource usage and thereby proactively auto-scale the number of pod 

replicas. This research was primarily conducted aiming to solve the response delay 

found on the existing autoscaling strategy in Kubernetes as well as manages to 

provide a detailed insight into some of the current issues found in the Kubernetes 

HPA and its implementation of rule-based autoscaling policies. However, even 

though the use of this combination of the above-mentioned techniques proved to 

produce more accurate forecasting compared to the traditional ARIMA model used, 

the use of EMD can be quite an inefficient and time-consuming process, as discussed 

in publications such as [9].  

The research conducted by H. Zhao and his team [10] makes use of a double 

exponential smoothing algorithm for predicting the resource consumption and 

thereby determining the predicted pods. However, a key point to note in the research 

conducted is the fact that the predictive algorithm developed, only makes use of the 

predicted values in the scaling-up process and does not utilize the prediction 

algorithm in the scaling down process. 

Y. Meng and his team [11] makes use of a data science-based approach to predict 

resource utilization. This research proposes the use of CRUPA, a resource utilization 

prediction algorithm based on the ARIMA time series analysis model combined with 

docker container techniques. This prediction algorithm was quite successful and had 

a high prediction accuracy with an average forecast error of about 6.5%. However, a 

key fact noted in this approach used is that this model developed, is primarily based 

on microservice containers, and does not make use of the existing auto-scaling tools 

provided by Kubernetes for the scaling process. 

Publications such as [12] propose a system architecture for Docker containerized 

applications with an auto-scaler based on a machine learning model. However, here 
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too, the proposed auto-scaler is primarily based on microservice containers and does 

not integrate with existing Kubernetes autoscaling tools similar to [11]. Other 

researches based on proactive containerized auto-scaling techniques similar to the 

previously mentioned researches stated include researches such as [13] and [14]. 

However, there have also been some other approaches proposed for improved 

autoscaling policies rather than the proactive solution-based approaches mentioned 

above, in order to solve the issues of rule-based autoscaling policies. Key researches 

include the dynamic multi-level autoscaling method proposed by the publication [15] 

which makes use of infrastructure as well as application-level monitoring data to 

dynamically specify thresholds for autoscaling. Other researches in this category 

include the heterogeneity-aware auto-scaling strategy [16] and the performance 

modeling-based approach for the rule-based auto-scaling technique proposed by the 

authors of [6].  

Some other key related researches in this regard includes the framework for 

autoscaling proposed by Al-Sharif [17] used in the provisioning of sufficient VMs to 

address the changing resource requirements in cloud environments, the master-slave 

autoscaling architecture for containerized applications proposed by Kukade and Kale 

[18], the container-based elastic cloud platform named Do Cloud proposed by Kan 

[19]  as well as the Platform Insights framework proposed in [20] which makes use 

of a combination of proactive and reactive models in order to scale resources. 

From the above-mentioned researches, it is clear that even though the solutions for 

improved autoscaling strategies proposed by these researches were quite effective, 

they were only focused on providing effective solutions for the localized rule-based 

autoscaling policies which were primarily based on infrastructure level metrics such 

as CPU utilization. 
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1.2 Research Gap   

                                                                                                             

In the identification of the research gap, the research publication [21] can be stated 

one the main publications that manage to provide insight into some of the key issues 

present in existing rule-based autoscaling strategies (particularly with respect to 

Kubernetes), as well as the some of the influential factors that should be considered 

in the development of an optimal auto-scaling strategy for Kubernetes based 

deployments. This publication is therefore quite influential in the identification of the 

research gap this research aims at fulfilling.  

According to this research publication, although existing rule-based auto-scaling 

methods may be suitable for cloud-based applications they may result in undesirable 

Quality of Service (QoS) or poor resource utilization with certain dynamic 

workloads. This publication then goes on to highlight the fact that ensuring a 

favorable performance in microservice-based applications governed by the existing 

reactive auto-scaling rules specifically is currently a challenging issue.  

Publications such as [4] also clearly state some of the key challenges that need to be 

addressed in current autoscaling services. According to this publication, there is a 

lack of autoscaling studies focusing on the service-level of autoscaling and the use of 

service level metrics (e.g.: - transactions per unit time). Additionally, issues such as 

the lack of monitoring tools and aggregating metrics at the platform level and service 

level to support autoscaling decisions are also clearly described in this regard. 

Furthermore, as described in the previous section, although many research 

publications provide various solutions in which to minimize issues present in rule-

based autoscaling policies through the use of various measures, a majority of the 

proposed researches make use of a limited amount of infrastructure-level metrics 

(primarily metrics such as CPU utilization) in order to define autoscaling policies. 

This, in turn, may result in ineffective autoscaling since other service-level metrics 

that can help in the realization of a more holistic view regarding the importance of a 

particular microservice in a deployment are not utilized in the creation of the 

autoscaling policy. 
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Through analysis of these research publications, the apparent gap in research related 

to the creation and development of auto-scaling policies that make use of the global 

importance of a particular microservice along with the use of service-level metrics is 

realized. 

This research thereby aims to fulfill this research gap with the inclusion of both 

service-level metrics and infrastructure-level metrics derived from monitoring 

solutions, for a load prediction based approach along with centrality based evaluation 

on the predicted loads, which will ultimately aid in the identification of key 

microservices in a particular deployment and thereby aid in the creation of a more 

globally aware autoscaling policy. 
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1.3 Research Problem 

 

The auto-scalers of container orchestration tools such as Kubernetes follow a broadly 

accepted reference model named MAPE (Monitor, Analyze, Plan, and Execute) used 

in various autonomic computing systems [3,5,21]. This MAPE model uses 

monitoring-based mechanisms to analyze relevant thresholds and thereby scale 

resources.  

However, this approach is rule-based and, at times, due to the dynamic nature of 

workload that microservices have to experience, the current rule-based auto-scaling 

mechanisms offered are unable to adapt to these workload intensities. This prevalent 

issue results in over-provisioning or under-provisioning of allocated resources and 

ultimately results in a lower Quality of Service (QoS) experienced by users. 

Issues such the response delay caused during resource creation and initialization 

[8,22] and the difficulties posed in configuring rule-based auto-scaling due to lack of 

knowledge and expertise as well as the vast configuration space involved during this 

process which in turn make the selection of optimal parameters and variables 

virtually impossible [6], further complicates the creation of effective rule-based auto-

scaling policies.   

In addition, due to the dynamic nature of the workload faced by microservices, it 

becomes necessary to make use of a wide variety of metrics in order to maintain the 

required SLAs [4]. Furthermore, this process is quite inefficient and usually results in 

ineffective resource provisioning due to the fact that most auto scalers make use of a 

limited amount of infrastructure-level metrics such as CPU utilization to infer 

autoscaling decisions. This lack of inclusion of other service-level resource metrics 

prevents and hinders effective autoscaling decision making and does not provide the 

necessary insight in order to visualize and understand how each microservice is 

utilized. Evidence regarding the importance of using higher-level metrics in the 

creation of autoscaling policies can be seen from reading research publications such 

as [15]. 
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2.0 OBJECTIVES 

 

2.1 Main Objective 

 

The main objective of this research is to develop an improved auto-scaling policy for 

a deployment, based on load prediction. 

 

2.2 Specific Objectives 

 

The specific objectives for the research project are as follows. 

• To develop an algorithm to predict the load of a microservice and determine 

centrality based on the predicted loads. 

• To develop the proposed auto-scaling policy without considering factors such 

as the location of instance creation, based on the global importance of a 

particular microservice, measured using the centrality measures (such as 

degree, betweenness, etc.) applied to the derived co-dependency network. 

• To evaluate the effect of centrality prediction-based mechanisms in the 

creation of an optimal deployment strategy for Kubernetes deployments. 
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3.0 METHODOLOGY 

 

3.1 Requirement Gathering 

 

Requirement gathering was primarily performed through the analysis of published 

research papers as a variety of online sources. A key focus was given on the 

identification of existing or similar systems developed and the methodology used. 

 

3.1.1 Past Research Analysis 

 

Past research analysis was primarily performed through reading research publications 

mainly focused on key areas such as resource utilization prediction, short term load 

prediction, time series analysis, proactive auto-scaling, cloud elasticity, centrality 

evaluation, and machine learning models. 

The primary focus was given in the identification of the methodology used, tools 

used, experiments conducted, as well as the overall findings of the research with 

respect to load forecasting and resource utilization prediction. 

 

3.1.2 Identifying Existing Systems 

 

Existing systems were primarily identified through referring research publications as 

well as referring a variety of online sources. A key focus was given in the 

identification of the existing feature they offered as well as the potential drawbacks 

in the technology and methodology used. 
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3.2 Feasibility Study 

 

3.2.1 Technical Feasibility  

 

Technical feasibility was a key factor considered in the requirements analysis phase 

of this research project since this project mainly focused on the development of a 

load prediction algorithm using machine learning technology. A key focus was given 

in the identification of potential system requirements as well as the required tools and 

technologies that may be used in the development of the proposed prediction 

algorithm. 

 

3.2.2 Schedule Feasibility  

 

The schedule feasibility was also a key factor considered throughout this research. A 

key focus was given in the identification of possible time periods and duration to 

develop and implement the proposed load prediction algorithm using the possible 

development tools and technology within an implementation period of about five 

months.  

 

3.2.3 Economic Feasibility 

 

The economic feasibility was another key factor considered before the development 

of this prediction algorithm. A key focus was given in the identification of the 

possible costs that might be incurred in the development process, as well as the costs 

that may be incurred in the use of the planned development tools and technologies. 
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3.3 Requirement Analysis 

 

The requirement analysis phase was one of the keys phases in this research project 

since it enabled in the identification of a variety of factors that should be considered 

in the implementation process of this research. 

During this process, the information gathered from the various sources during the 

requirement gathering phase was analyzed. As a result, the key factors related to the 

possible challenges that may be encountered as well as insight into the methodology 

and also a clear understanding of the use of possible and tools and technology were 

also able to be easily identified.  

Furthermore, a clear idea of the scope of the proposed research, as well as the 

feasibility of the project, was also able to be identified during this phase. 

Requirement analysis also helped in the determination of the existing research gaps 

as well as provide insight into the identification underlying research problem as the 

research.   
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3.4 System Analysis  

 

 

                      

 

Figure 3.2: System Overview 

 

Figure 3.1: Load Prediction Component in the Proposed Governance Model 
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The load prediction component will be integrated into the governance model 

proposed in the main research component, as given in Figure 3.1 above. Figure 3.2 

describes a higher level, in-depth view of the proposed Load Prediction Component.  

The load prediction component will be responsible for the retrieval of the metrics 

from the co-dependency network, prediction of future load based on metrics and 

identification and evaluation of the centrality measures of a microservice, based on 

the predicted loads. This component will make use of statistical and machine 

learning-based time series prediction measures in order to perform the above process.  

In addition, the centrality of a microservice is planned to be evaluated based on the 

following types of centrality measures on the predicted loads.  

• Degree centrality 

• Closeness centrality 

• Betweenness centrality 

• Eigenvector centrality 

Through evaluation of the above-mentioned centrality measures key microservices, 

the level of interdependency among microservices can be further analyzed. These 

key microservices identified using the evaluated centrality measures can be then used 

as inputs for the algorithm that determines the optimal deployment strategy for the 

given cluster. This component will thereby enable identification of key microservices 

within a cluster and aid in producing an improved autoscaling policy based on the 

global importance of a particular microservice. 

 

 

 

 

 

 



16 
 

3.5 System Development and Implementation  

 

The steps in the development of the proposed load prediction component are as 

follows. 

1. Obtain the list microservices that show a high level of dependency based on 

the proposed co-dependency network. 

2. Identify the relevant pods in which the identified microservices are deployed. 

3. Receive the resource usage metrics of the identified microservices. 

4. Convert the metrics obtained into a time series. 

5. Plot time series to identify the relevant time series components such as trend, 

seasonality, etc. 

6. Convert time series to a stationary dataset. 

7. Develop an algorithm using the prediction model to forecast (train dataset and 

forecast) the load on the obtained resource metrics.  

8. Evaluate the centrality (degree, closeness, etc.) based on the predicted loads. 

9. Forecasted utilization values for the identified microservices will be 

forwarded to the optimization algorithm and used in configuring the auto-

scaling of the cluster. 

The proposed implementation process will primarily make use of a data-science 

based approach in the development load prediction component. After the key 

microservices are identified with the help of the developed co-dependency network, 

the obtained resource usage and load metrics from the co-dependency network will 

be recorded in a temporary database within the cluster and converted into a time 

series model in order to perform the prediction process. Steps must also be taken to 

ensure the obtained data is properly cleaned so as to eliminate any irregularities in 

the collected data, and the relevant time series components could be easily identified. 

Here, the Python programming language, along with other open-source libraries and 

tools such as Jupyter Notebook and Anaconda, are expected to be used in performing 

the above-mentioned process. In order to ensure maximum accuracy is achieved in 

the prediction process, a variety of time series prediction models are also expected to 
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be evaluated, and the most suitable prediction model will be selected. Here too, 

machine learning libraries such as TensorFlow are expected to be used in the 

development of the prediction algorithm. Lastly, in order to evaluate the relevant 

centrality measures based on the predicted load, libraries such as NetworkX are 

expected to be used. In summary, a list of all primary tools, libraries, and 

programming languages that are expected to be used in this research is given in the 

table below. 

 

Tools • Anaconda 

• Jupyter Notebook 

Programming Languages • Python 

Python libraries • Numpy 

• Scikit-learn 

• TensorFlow 

• Pandas 

• Matplotlib 

• NetworkX 

 

Table 3.1: Tools and Technology 

 

 

 

 

 

 

 

 



18 
 

3.6 Project Requirements 

 

3.6.1 Functional requirements 

 

The primary functional requirements aimed at fulfilling during the implementation 

process in this research are as follows. 

 

• Dependency metrics for prediction should be obtained from the co-

dependency network developed 

• Predictions should be made at least 24hrs ahead 

• The algorithm should predict highly dependent microservices based on 

retrieved metrics identified using centrality measures 

• Prediction should be based on a time series prediction model 

• The auto scaler should be configured to scale based on the obtained 

predictions 

 

3.6.2 Non-Functional Requirements  

 

The following are the non-functional requirements that are primarily being focused 

on during this research. 

 

• Availability – The proposed system should be able to function throughout the 

day without any restrictions. 

 

• Efficiency – The proposed system should be as efficient as possible and make 

use of minimal resources in the prediction process such that it does not affect 

the performance of the overall cluster.  
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• Performance – The proposed system should be able to handle the vast amount 

of data it receives and be able to process the data without affecting the system 

performance. 

 

• Interoperability – The proposed system should be able to interact and 

communicate with the other components proposed in this research and 

receive inputs as well as forward outputs to the desired components. 
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3.7 Testing 

 

The load prediction component will primarily be tested to ensure the forecasted time 

series model accurately captures key time series components and that the optimal set 

of parameters is given to the prediction model such that the forecasting errors are 

minimal as possible. Testing will be used to ensure the most suitable prediction 

model will be used in performing the prediction process in order to achieve the 

highest prediction accuracy, and the relevant centrality measures are accurately 

identified based on the predicted loads.  Furthermore, since testing will be evaluated 

in a sample Kubernetes cluster, the auto-scaling process will also be evaluated to 

ensure that the autoscaling tool (HPA) is correctly configured to scale the number of 

pods based on the load prediction algorithm and the evaluated centrality measures. 

The metrics used for testing the load prediction component will be obtained from the 

load generated from the load generation tool used in the creation of the co-

dependency network. 
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4.0 PERSONEL AND FACILITIES 

 

Name Key Tasks 

De Silva N. • Retrieval of the necessary metric 

data from pods in the cluster in 

order to perform the load 

prediction based on the developed 

dependency map. 

 

• Development of solution in order 

to store the gathered metric data 

for time series analysis. 

 

• Preparing and manipulating the 

extracted data in order to establish 

a time series. (data cleaning) 

 

• Development of a time series data 

set based on the historical metric 

data retrieved, such that future 

loads could be predicted. 

 

• Selection of the most appropriate 

time series forecasting model for 

load prediction. 

 

 

 

 

Table 4.1: Personnel and Resources 
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• Development of the algorithm with 

the help of Machine Learning, for 

the time series using the selected 

model in order to predict future 

loads and determine centrality. 

 

• Finetune the developed model in 

order to get the most accurate 

prediction. 
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5.0 COMMERCIALIZATION 

 

This research is primarily designed as a supplementary tool for the main research 

component. However, this autoscaling model could also be developed as a 

standalone APM tool since it could be used to provide users a variety of benefits not 

seen in most autoscaling tools developed today. These benefits include the ability to: 

• Integrate with monitoring solutions in order to retrieve load-based metrics 

and predict future loads based on the received metrics. 

• Evaluate and provide solutions to visualize a vast variety of centrality 

measures based on the predicted loads. 

•  Automatically configure and auto-scale Kubernetes autoscaling tools based on 

inputs derived from the predicted load and centrality measures. 

This tool will be primarily targeted for system administrators and cloud engineers 

who manage and maintain cloud-based microservice deployments. Due to the heavy 

competition in the APM market space which primarily includes a vast variety of 

opensource APM tools, the initial marketing strategy will be to adopt an opensource 

marketing strategy in order to easily enter the marketspace and capture users. 

However, since this autoscaling tool is quite a unique tool that offers some useful 

benefits as mentioned above, adopting a freemium marketing strategy for this tool for 

users for additional supplementary features will the most appropriate approach once 

this tool becomes more popular in the future. 
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6.0 BUDGET  

 

The proposed prediction component will be primarily be developed using open source 

tools. Hence, based on this fact, as well as the information gathered during the 

requirements gathering phase, there is no cost expected to be incurred in the 

development process of this project. 

However, some additional external costs are expected to be incurred in conducting this 

research as stated in table 5.1 given below 

Internet use 1500 LKR 

Publication costs 500 LKR 

Stationary  500 LKR 

TOTAL 2500 LKR 

 

Table 5.1: Budget 

Note: Azure Student subscription with $100 of free credit for 12 months will be used 

for this project. Therefore, resource creation for the VMs needed for testing and 

creation of the Kubernetes cluster to be used for implementation purposes could be 

obtained without any additional cost and hence is not included in the budget. 
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7.0 SUMMARY  

 

The current implementation of MAPE based autoscaling techniques used in 

autoscaling tools in microservice orchestration tools such as Kubernetes are primarily 

rule-based and hence it becomes difficult to adapt to the dynamic workloads 

microservices experience resulting in ineffective scaling and a drop in QoS. 

Furthermore, in order to effectively develop an autoscaling policy that optimally 

makes use of available resources and, in turn, minimize the effect of the above-

mentioned problems, it becomes necessary to take into consideration a global view of 

each microservice and how it is being utilized. 

This research, as described above, thereby aims to provide a solution to this problem 

through a statistical and machine learning-based approach to effectively predict load 

through metric analysis while incorporating centrality-based evaluation techniques to 

determine the centrality of a microservice so as to obtain a more holistic view of the 

utilization of each microservice and ultimately develop a more effective autoscaling 

policy. 
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