

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

De Silva N.

B.Sc. (Hons) Degree in Information Technology Specialized in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

B.Sc. (Hons) Degree in Information Technology Specialized in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

i

Declaration

ii

Abstract

One of the many advantages of using Kubernetes for microservice deployments is the ability

to scale cluster resources based on traffic. This ability of Kubernetes to automatically scale

cluster resources thereby enables developers and system administrators to reduce costs and

make use of their deployed microservices more effectively and efficiently.

However, even though the autoscaling tools such as the Horizontal Pod Autoscaler (HPA)

provided by Kubernetes help developers and system administrators to effectively utilize their

microservice deployments as previously stated, they also possess some inherent drawbacks

as well. The main drawback among them being that these autoscaling policies adopted are

primarily local and rule-based auto-scaling techniques which do not consider the overall

impact of the auto-scaling policy in order to truly optimize the existing resources in a

particular deployment.

This research thereby aims to address this issue prevalent through aiming to provide a data

science-based approach with the help of statistical and machine learning-based time series

prediction measures to predict the load of microservice and thereby evaluate and determine

centrality, based on identified dependency measurements to ultimately develop an improved

auto-scaling policy which takes into account the global importance of a particular

microservice.

Keywords: Auto-scaling, Kubernetes, Machine Learning, Microservices, Time Series

iii

Table of Contents

Declaration... i

Abstract ..ii

Table of Contents ... iii

List of Figures .. v

List of Tables .. vi

List of Abbreviations .. vii

1.0 INTRODUCTION .. 1

1.1 Background and Literature .. 3

1.2 Research Gap ... 7

1.3 Research Problem .. 9

2.0 OBJECTIVES .. 10

2.1 Main Objective ... 10

2.2 Specific Objectives ... 10

3.0 METHODOLOGY ... 11

3.1 Requirement Gathering ... 11

3.1.1 Past Research Analysis ... 11

3.1.2 Identifying Existing Systems .. 11

3.2 Feasibility Study ... 12

3.2.1 Technical Feasibility ... 12

3.2.2 Schedule Feasibility... 12

3.2.3 Economic Feasibility ... 12

3.3 Requirement Analysis .. 13

3.4 System Analysis .. 14

3.5 System Development and Implementation .. 16

3.6 Project Requirements .. 18

3.6.1 Functional requirements .. 18

3.6.2 Non-Functional Requirements ... 18

3.7 Testing ... 20

4.0 PERSONEL AND FACILITIES .. 21

5.0 COMMERCIALIZATION ... 23

6.0 BUDGET ... 24

https://sliit980.sharepoint.com/sites/CDAP-2020/Shared%20Documents/Documentation/ProjectProposal_individual%20report_it17006880.docx#_Toc33555862
https://sliit980.sharepoint.com/sites/CDAP-2020/Shared%20Documents/Documentation/ProjectProposal_individual%20report_it17006880.docx#_Toc33555862

iv

7.0 SUMMARY .. 25

8.0 REFERENCES ... 26

v

List of Figures

Figure 1.1 MAPE Control Loop .. 4

Figure 3.1 Load Prediction Component in the Proposed Governance Model 14

Figure 3.2 System Overview .. 14

vi

List of Tables

Table 3.1 Tools and Technology .. 17

Table 4.1 Personnel and Resources .. 21

Table 5.1 Budget .. 22

vii

List of Abbreviations

Abbreviation Description

ARIMA Auto-Regressive Integrated Moving Average

AWS Amazon Web Service

EMD Empirical Mode Decomposition

HPA Horizontal Pod Autoscaler

MAPE Monitor Analyze Plan Execute

QoS Quality of Service

SLA Service Level Agreement

VM Virtual Machine

VPA Vertical Pod Autoscaler

1

1.0 INTRODUCTION

Kubernetes has become one of the most popular platforms for deploying

microservices today, due to its ability to manage and orchestrate containerized

workloads and services. The use of Kubernetes has therefore enabled developers the

ability to move on from the traditional deployment methodologies such as physical

servers and Virtual Machines and make use of the newer containerized deployment

methodologies through the use of open-source tools such as Docker. Furthermore,

since Kubernetes provides a vast array of features and services such as service

discovery and load balancing, storage orchestration, self-healing, etc. [1], it has

managed to become one of the leading container orchestration tools currently

available.

Among the many services and that Kubernetes offers among its vast array of

features, is the ability to automatically scale based on workloads. This process is

known as autoscaling and refers to the automatic scaling of computational resources

based on the required workloads. This autoscaling feature thereby enables developers

to make use of optimal use resources while minimizing the incurred cost.

However, the above-mentioned autoscaling feature primarily adopts local and rule-

based auto-scaling techniques to dynamically manage the number of microservice

resources in a particular deployment. These rule-based techniques make use of a

limited amount of infrastructure-level metrics such as CPU utilization to determine

thresholds for autoscaling policies. However, doing so creates a lack of global

awareness when making effective autoscaling decisions due to the use of a limited

amount of metrics considered in autoscaling processes which in turn, may cause

under or over-provisioning of resources and ultimately result in ineffective

autoscaling. Therefore, in order to truly optimally utilize the existing resources in a

microservice-based deployment, it may be necessary to have a global view of how

each microservice is utilized.

2

This research aims to develop a solution to the above-described problem by aiming

to adopt a data-science based approach with the use of statistical or machine

learning-based time series prediction measures to develop an algorithm to predict

future loads and thereby use these predicted loads to evaluate the centrality of a

particular microservice, in order to produce a more effective autoscaling policy based

on the global importance of a microservice.

3

1.1 Background and Literature

According to popular cloud providers such as AWS, auto-scaling is defined as a

cloud computing service feature that allows AWS users to automatically launch or

terminate virtual instances based on defined policies, health status checks, and

schedules [2] whereas other publications such as [3] define autoscaling as a

mechanism of dynamically acquiring or releasing resources to meet QoS

requirements. However, one of the most in-depth descriptions of the definition of

autoscaling is provided by the publication [4]. This publication clearly manages to

summarize the key features of autoscaling, which can be listed as follows.

• Ability to scale out (addition of extra unused resources during increased

demand) and scale in (removal of extra unused resources during reduced

demand)

• Capability of setting rules for scaling in and out

• Automatically detect and remove unhealthy instances

Due to these features, autoscaling is widely adopted in a variety of cloud platforms as

well in other technologies to scale a wide variety of resources ranging from VMs to

other resources such as pods in orchestration tools such as Kubernetes. Additionally,

due to the elastic nature which allows resources to be provisioned more

conservatively, cloud providers can serve more customers with the same

infrastructure.

Furthermore, the autoscaling process for the resources mentioned above can be

performed using a variety of techniques, as described in [5]. However, among them,

rule-based autoscaling is the technique most commonly used by many cloud vendors

today [6] as well as in other orchestration platforms such as Kubernetes, evident

through its HPA and VPA autoscaling tools.

Rule-based autoscaling involves defining the conditions under which capacity will be

added to or removed from a cloud-based system, in order to satisfy the objectives of

the application owner [6]. Therefore, for a rule-based autoscaling approach to be

effective, the application provider has to specify upper and lower bounds, which are

4

usually defined through a performance metric such as CPU utilization. This approach

to rule-based approach to autoscaling has therefore defined rule-based autoscaling as

a more reactive approach to provision resources since the autoscaling process occurs

when the defined thresholds and bounds set, are exceeded.

Another key characteristic that is present in most rule-based autoscaling policies is

the adaptation of the MAPE (Monitor, Analyze, Plan, and Execute) control loop

reference model used in various autonomic computing systems. This is reference

model is primarily adopted in orchestration tools such as Kubernetes in the creation

of guidelines of self-adaptive software systems [7].

Figure 1.1 MAPE Control Loop [5]

However, there are some issues prevalent in the adaptation of this model along with

the rule-based autoscaling policies adopted. These include issues ranging from the

lack of adaptability to dynamic workloads faced, which result in under or over-

provisioning of resources and loss in the QoS, to issues such as the response delay

faced in resource creation. As a result, throughout the years, various research

publications have proposed numerous approaches ranging from proactive autoscaling

through resource prediction to other approaches such as performance modeling, in

order to combat these prevalent issues.

Therefore, before moving on with the implementation of this research, it is vital a

thorough analysis is conducted on some of the existing research carried out in order

to solve some of the current issues found these local and rule-based (reactive)

5

autoscaling policies adopted in Kubernetes as well as other similar autoscaling

technologies.

The research conducted by A. Zhao and his team [8], uses a resource prediction

model based on Kubernetes container auto-scaling technology and makes use of a

combination of ARIMA model as well as Empirical Mode Decomposition (EMD) to

predict the resource usage and thereby proactively auto-scale the number of pod

replicas. This research was primarily conducted aiming to solve the response delay

found on the existing autoscaling strategy in Kubernetes as well as manages to

provide a detailed insight into some of the current issues found in the Kubernetes

HPA and its implementation of rule-based autoscaling policies. However, even

though the use of this combination of the above-mentioned techniques proved to

produce more accurate forecasting compared to the traditional ARIMA model used,

the use of EMD can be quite an inefficient and time-consuming process, as discussed

in publications such as [9].

The research conducted by H. Zhao and his team [10] makes use of a double

exponential smoothing algorithm for predicting the resource consumption and

thereby determining the predicted pods. However, a key point to note in the research

conducted is the fact that the predictive algorithm developed, only makes use of the

predicted values in the scaling-up process and does not utilize the prediction

algorithm in the scaling down process.

Y. Meng and his team [11] makes use of a data science-based approach to predict

resource utilization. This research proposes the use of CRUPA, a resource utilization

prediction algorithm based on the ARIMA time series analysis model combined with

docker container techniques. This prediction algorithm was quite successful and had

a high prediction accuracy with an average forecast error of about 6.5%. However, a

key fact noted in this approach used is that this model developed, is primarily based

on microservice containers, and does not make use of the existing auto-scaling tools

provided by Kubernetes for the scaling process.

Publications such as [12] propose a system architecture for Docker containerized

applications with an auto-scaler based on a machine learning model. However, here

6

too, the proposed auto-scaler is primarily based on microservice containers and does

not integrate with existing Kubernetes autoscaling tools similar to [11]. Other

researches based on proactive containerized auto-scaling techniques similar to the

previously mentioned researches stated include researches such as [13] and [14].

However, there have also been some other approaches proposed for improved

autoscaling policies rather than the proactive solution-based approaches mentioned

above, in order to solve the issues of rule-based autoscaling policies. Key researches

include the dynamic multi-level autoscaling method proposed by the publication [15]

which makes use of infrastructure as well as application-level monitoring data to

dynamically specify thresholds for autoscaling. Other researches in this category

include the heterogeneity-aware auto-scaling strategy [16] and the performance

modeling-based approach for the rule-based auto-scaling technique proposed by the

authors of [6].

Some other key related researches in this regard includes the framework for

autoscaling proposed by Al-Sharif [17] used in the provisioning of sufficient VMs to

address the changing resource requirements in cloud environments, the master-slave

autoscaling architecture for containerized applications proposed by Kukade and Kale

[18], the container-based elastic cloud platform named Do Cloud proposed by Kan

[19] as well as the Platform Insights framework proposed in [20] which makes use

of a combination of proactive and reactive models in order to scale resources.

From the above-mentioned researches, it is clear that even though the solutions for

improved autoscaling strategies proposed by these researches were quite effective,

they were only focused on providing effective solutions for the localized rule-based

autoscaling policies which were primarily based on infrastructure level metrics such

as CPU utilization.

7

1.2 Research Gap

In the identification of the research gap, the research publication [21] can be stated

one the main publications that manage to provide insight into some of the key issues

present in existing rule-based autoscaling strategies (particularly with respect to

Kubernetes), as well as the some of the influential factors that should be considered

in the development of an optimal auto-scaling strategy for Kubernetes based

deployments. This publication is therefore quite influential in the identification of the

research gap this research aims at fulfilling.

According to this research publication, although existing rule-based auto-scaling

methods may be suitable for cloud-based applications they may result in undesirable

Quality of Service (QoS) or poor resource utilization with certain dynamic

workloads. This publication then goes on to highlight the fact that ensuring a

favorable performance in microservice-based applications governed by the existing

reactive auto-scaling rules specifically is currently a challenging issue.

Publications such as [4] also clearly state some of the key challenges that need to be

addressed in current autoscaling services. According to this publication, there is a

lack of autoscaling studies focusing on the service-level of autoscaling and the use of

service level metrics (e.g.: - transactions per unit time). Additionally, issues such as

the lack of monitoring tools and aggregating metrics at the platform level and service

level to support autoscaling decisions are also clearly described in this regard.

Furthermore, as described in the previous section, although many research

publications provide various solutions in which to minimize issues present in rule-

based autoscaling policies through the use of various measures, a majority of the

proposed researches make use of a limited amount of infrastructure-level metrics

(primarily metrics such as CPU utilization) in order to define autoscaling policies.

This, in turn, may result in ineffective autoscaling since other service-level metrics

that can help in the realization of a more holistic view regarding the importance of a

particular microservice in a deployment are not utilized in the creation of the

autoscaling policy.

8

Through analysis of these research publications, the apparent gap in research related

to the creation and development of auto-scaling policies that make use of the global

importance of a particular microservice along with the use of service-level metrics is

realized.

This research thereby aims to fulfill this research gap with the inclusion of both

service-level metrics and infrastructure-level metrics derived from monitoring

solutions, for a load prediction based approach along with centrality based evaluation

on the predicted loads, which will ultimately aid in the identification of key

microservices in a particular deployment and thereby aid in the creation of a more

globally aware autoscaling policy.

9

1.3 Research Problem

The auto-scalers of container orchestration tools such as Kubernetes follow a broadly

accepted reference model named MAPE (Monitor, Analyze, Plan, and Execute) used

in various autonomic computing systems [3,5,21]. This MAPE model uses

monitoring-based mechanisms to analyze relevant thresholds and thereby scale

resources.

However, this approach is rule-based and, at times, due to the dynamic nature of

workload that microservices have to experience, the current rule-based auto-scaling

mechanisms offered are unable to adapt to these workload intensities. This prevalent

issue results in over-provisioning or under-provisioning of allocated resources and

ultimately results in a lower Quality of Service (QoS) experienced by users.

Issues such the response delay caused during resource creation and initialization

[8,22] and the difficulties posed in configuring rule-based auto-scaling due to lack of

knowledge and expertise as well as the vast configuration space involved during this

process which in turn make the selection of optimal parameters and variables

virtually impossible [6], further complicates the creation of effective rule-based auto-

scaling policies.

In addition, due to the dynamic nature of the workload faced by microservices, it

becomes necessary to make use of a wide variety of metrics in order to maintain the

required SLAs [4]. Furthermore, this process is quite inefficient and usually results in

ineffective resource provisioning due to the fact that most auto scalers make use of a

limited amount of infrastructure-level metrics such as CPU utilization to infer

autoscaling decisions. This lack of inclusion of other service-level resource metrics

prevents and hinders effective autoscaling decision making and does not provide the

necessary insight in order to visualize and understand how each microservice is

utilized. Evidence regarding the importance of using higher-level metrics in the

creation of autoscaling policies can be seen from reading research publications such

as [15].

10

2.0 OBJECTIVES

2.1 Main Objective

The main objective of this research is to develop an improved auto-scaling policy for

a deployment, based on load prediction.

2.2 Specific Objectives

The specific objectives for the research project are as follows.

• To develop an algorithm to predict the load of a microservice and determine

centrality based on the predicted loads.

• To develop the proposed auto-scaling policy without considering factors such

as the location of instance creation, based on the global importance of a

particular microservice, measured using the centrality measures (such as

degree, betweenness, etc.) applied to the derived co-dependency network.

• To evaluate the effect of centrality prediction-based mechanisms in the

creation of an optimal deployment strategy for Kubernetes deployments.

11

3.0 METHODOLOGY

3.1 Requirement Gathering

Requirement gathering was primarily performed through the analysis of published

research papers as a variety of online sources. A key focus was given on the

identification of existing or similar systems developed and the methodology used.

3.1.1 Past Research Analysis

Past research analysis was primarily performed through reading research publications

mainly focused on key areas such as resource utilization prediction, short term load

prediction, time series analysis, proactive auto-scaling, cloud elasticity, centrality

evaluation, and machine learning models.

The primary focus was given in the identification of the methodology used, tools

used, experiments conducted, as well as the overall findings of the research with

respect to load forecasting and resource utilization prediction.

3.1.2 Identifying Existing Systems

Existing systems were primarily identified through referring research publications as

well as referring a variety of online sources. A key focus was given in the

identification of the existing feature they offered as well as the potential drawbacks

in the technology and methodology used.

12

3.2 Feasibility Study

3.2.1 Technical Feasibility

Technical feasibility was a key factor considered in the requirements analysis phase

of this research project since this project mainly focused on the development of a

load prediction algorithm using machine learning technology. A key focus was given

in the identification of potential system requirements as well as the required tools and

technologies that may be used in the development of the proposed prediction

algorithm.

3.2.2 Schedule Feasibility

The schedule feasibility was also a key factor considered throughout this research. A

key focus was given in the identification of possible time periods and duration to

develop and implement the proposed load prediction algorithm using the possible

development tools and technology within an implementation period of about five

months.

3.2.3 Economic Feasibility

The economic feasibility was another key factor considered before the development

of this prediction algorithm. A key focus was given in the identification of the

possible costs that might be incurred in the development process, as well as the costs

that may be incurred in the use of the planned development tools and technologies.

13

3.3 Requirement Analysis

The requirement analysis phase was one of the keys phases in this research project

since it enabled in the identification of a variety of factors that should be considered

in the implementation process of this research.

During this process, the information gathered from the various sources during the

requirement gathering phase was analyzed. As a result, the key factors related to the

possible challenges that may be encountered as well as insight into the methodology

and also a clear understanding of the use of possible and tools and technology were

also able to be easily identified.

Furthermore, a clear idea of the scope of the proposed research, as well as the

feasibility of the project, was also able to be identified during this phase.

Requirement analysis also helped in the determination of the existing research gaps

as well as provide insight into the identification underlying research problem as the

research.

14

3.4 System Analysis

Figure 3.2: System Overview

Figure 3.1: Load Prediction Component in the Proposed Governance Model

15

The load prediction component will be integrated into the governance model

proposed in the main research component, as given in Figure 3.1 above. Figure 3.2

describes a higher level, in-depth view of the proposed Load Prediction Component.

The load prediction component will be responsible for the retrieval of the metrics

from the co-dependency network, prediction of future load based on metrics and

identification and evaluation of the centrality measures of a microservice, based on

the predicted loads. This component will make use of statistical and machine

learning-based time series prediction measures in order to perform the above process.

In addition, the centrality of a microservice is planned to be evaluated based on the

following types of centrality measures on the predicted loads.

• Degree centrality

• Closeness centrality

• Betweenness centrality

• Eigenvector centrality

Through evaluation of the above-mentioned centrality measures key microservices,

the level of interdependency among microservices can be further analyzed. These

key microservices identified using the evaluated centrality measures can be then used

as inputs for the algorithm that determines the optimal deployment strategy for the

given cluster. This component will thereby enable identification of key microservices

within a cluster and aid in producing an improved autoscaling policy based on the

global importance of a particular microservice.

16

3.5 System Development and Implementation

The steps in the development of the proposed load prediction component are as

follows.

1. Obtain the list microservices that show a high level of dependency based on

the proposed co-dependency network.

2. Identify the relevant pods in which the identified microservices are deployed.

3. Receive the resource usage metrics of the identified microservices.

4. Convert the metrics obtained into a time series.

5. Plot time series to identify the relevant time series components such as trend,

seasonality, etc.

6. Convert time series to a stationary dataset.

7. Develop an algorithm using the prediction model to forecast (train dataset and

forecast) the load on the obtained resource metrics.

8. Evaluate the centrality (degree, closeness, etc.) based on the predicted loads.

9. Forecasted utilization values for the identified microservices will be

forwarded to the optimization algorithm and used in configuring the auto-

scaling of the cluster.

The proposed implementation process will primarily make use of a data-science

based approach in the development load prediction component. After the key

microservices are identified with the help of the developed co-dependency network,

the obtained resource usage and load metrics from the co-dependency network will

be recorded in a temporary database within the cluster and converted into a time

series model in order to perform the prediction process. Steps must also be taken to

ensure the obtained data is properly cleaned so as to eliminate any irregularities in

the collected data, and the relevant time series components could be easily identified.

Here, the Python programming language, along with other open-source libraries and

tools such as Jupyter Notebook and Anaconda, are expected to be used in performing

the above-mentioned process. In order to ensure maximum accuracy is achieved in

the prediction process, a variety of time series prediction models are also expected to

17

be evaluated, and the most suitable prediction model will be selected. Here too,

machine learning libraries such as TensorFlow are expected to be used in the

development of the prediction algorithm. Lastly, in order to evaluate the relevant

centrality measures based on the predicted load, libraries such as NetworkX are

expected to be used. In summary, a list of all primary tools, libraries, and

programming languages that are expected to be used in this research is given in the

table below.

Tools • Anaconda

• Jupyter Notebook

Programming Languages • Python

Python libraries • Numpy

• Scikit-learn

• TensorFlow

• Pandas

• Matplotlib

• NetworkX

Table 3.1: Tools and Technology

18

3.6 Project Requirements

3.6.1 Functional requirements

The primary functional requirements aimed at fulfilling during the implementation

process in this research are as follows.

• Dependency metrics for prediction should be obtained from the co-

dependency network developed

• Predictions should be made at least 24hrs ahead

• The algorithm should predict highly dependent microservices based on

retrieved metrics identified using centrality measures

• Prediction should be based on a time series prediction model

• The auto scaler should be configured to scale based on the obtained

predictions

3.6.2 Non-Functional Requirements

The following are the non-functional requirements that are primarily being focused

on during this research.

• Availability – The proposed system should be able to function throughout the

day without any restrictions.

• Efficiency – The proposed system should be as efficient as possible and make

use of minimal resources in the prediction process such that it does not affect

the performance of the overall cluster.

19

• Performance – The proposed system should be able to handle the vast amount

of data it receives and be able to process the data without affecting the system

performance.

• Interoperability – The proposed system should be able to interact and

communicate with the other components proposed in this research and

receive inputs as well as forward outputs to the desired components.

20

3.7 Testing

The load prediction component will primarily be tested to ensure the forecasted time

series model accurately captures key time series components and that the optimal set

of parameters is given to the prediction model such that the forecasting errors are

minimal as possible. Testing will be used to ensure the most suitable prediction

model will be used in performing the prediction process in order to achieve the

highest prediction accuracy, and the relevant centrality measures are accurately

identified based on the predicted loads. Furthermore, since testing will be evaluated

in a sample Kubernetes cluster, the auto-scaling process will also be evaluated to

ensure that the autoscaling tool (HPA) is correctly configured to scale the number of

pods based on the load prediction algorithm and the evaluated centrality measures.

The metrics used for testing the load prediction component will be obtained from the

load generated from the load generation tool used in the creation of the co-

dependency network.

21

4.0 PERSONEL AND FACILITIES

Name Key Tasks

De Silva N. • Retrieval of the necessary metric

data from pods in the cluster in

order to perform the load

prediction based on the developed

dependency map.

• Development of solution in order

to store the gathered metric data

for time series analysis.

• Preparing and manipulating the

extracted data in order to establish

a time series. (data cleaning)

• Development of a time series data

set based on the historical metric

data retrieved, such that future

loads could be predicted.

• Selection of the most appropriate

time series forecasting model for

load prediction.

Table 4.1: Personnel and Resources

22

• Development of the algorithm with

the help of Machine Learning, for

the time series using the selected

model in order to predict future

loads and determine centrality.

• Finetune the developed model in

order to get the most accurate

prediction.

23

5.0 COMMERCIALIZATION

This research is primarily designed as a supplementary tool for the main research

component. However, this autoscaling model could also be developed as a

standalone APM tool since it could be used to provide users a variety of benefits not

seen in most autoscaling tools developed today. These benefits include the ability to:

• Integrate with monitoring solutions in order to retrieve load-based metrics

and predict future loads based on the received metrics.

• Evaluate and provide solutions to visualize a vast variety of centrality

measures based on the predicted loads.

• Automatically configure and auto-scale Kubernetes autoscaling tools based on

inputs derived from the predicted load and centrality measures.

This tool will be primarily targeted for system administrators and cloud engineers

who manage and maintain cloud-based microservice deployments. Due to the heavy

competition in the APM market space which primarily includes a vast variety of

opensource APM tools, the initial marketing strategy will be to adopt an opensource

marketing strategy in order to easily enter the marketspace and capture users.

However, since this autoscaling tool is quite a unique tool that offers some useful

benefits as mentioned above, adopting a freemium marketing strategy for this tool for

users for additional supplementary features will the most appropriate approach once

this tool becomes more popular in the future.

24

6.0 BUDGET

The proposed prediction component will be primarily be developed using open source

tools. Hence, based on this fact, as well as the information gathered during the

requirements gathering phase, there is no cost expected to be incurred in the

development process of this project.

However, some additional external costs are expected to be incurred in conducting this

research as stated in table 5.1 given below

Internet use 1500 LKR

Publication costs 500 LKR

Stationary 500 LKR

TOTAL 2500 LKR

Table 5.1: Budget

Note: Azure Student subscription with $100 of free credit for 12 months will be used

for this project. Therefore, resource creation for the VMs needed for testing and

creation of the Kubernetes cluster to be used for implementation purposes could be

obtained without any additional cost and hence is not included in the budget.

25

7.0 SUMMARY

The current implementation of MAPE based autoscaling techniques used in

autoscaling tools in microservice orchestration tools such as Kubernetes are primarily

rule-based and hence it becomes difficult to adapt to the dynamic workloads

microservices experience resulting in ineffective scaling and a drop in QoS.

Furthermore, in order to effectively develop an autoscaling policy that optimally

makes use of available resources and, in turn, minimize the effect of the above-

mentioned problems, it becomes necessary to take into consideration a global view of

each microservice and how it is being utilized.

This research, as described above, thereby aims to provide a solution to this problem

through a statistical and machine learning-based approach to effectively predict load

through metric analysis while incorporating centrality-based evaluation techniques to

determine the centrality of a microservice so as to obtain a more holistic view of the

utilization of each microservice and ultimately develop a more effective autoscaling

policy.

26

8.0 REFERENCES

[1] “What is Kubernetes,” Kubernetes. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed: 13-

Feb-2020].

[2] AWS Auto Scaling", Amazon Web Services, Inc., 2020. [Online]. Available:

https://aws.amazon.com/autoscaling/. [Accessed: 20- Feb- 2020].

[3] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-Scaling Web Applications in

Clouds,” ACM Computing Surveys, vol. 51, no. 4, pp. 1–33, 2018.

[4] H. Alipour, A. Hamou-Lhajd and X. Liu, “Analyzing Auto-scaling Issues in

Cloud Environments”, 2014

[5] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on Auto-Scaling of Web

Applications in Cloud: Survey, Trends and Future Directions,” Scalable Computing:

Practice and Experience, vol. 20, no. 2, pp. 399–432, Feb. 2019.

[6] A. Evangelidis, D. Parker, and R. Bahsoon, “Performance Modelling and

Verification of Cloud-Based Auto-Scaling Policies,” 2017 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017.

[7] S. Taherizadeh and M. Grobelnik, “Key influencing factors of the Kubernetes

auto-scaler for computing-intensive microservice-native cloud-based

applications,” Advances in Engineering Software, vol. 140, p. 102734, 2020.

[8] Zhao, A., Huang, Q., Huang, Y., Zou, L., Chen, Z., & Song, J. “Research on

Resource Prediction Model Based on Kubernetes Container Auto-scaling

Technology.” IOP Conference Series: Materials Science and Engineering, 2019.

[9] Yamin Wang, L. Wu and Shouxiang Wang, "Challenges in applying the

empirical mode decomposition based hybrid algorithm for forecasting renewable

wind/solar in practical cases," 2016 IEEE Power and Energy Society General

Meeting (PESGM), Boston, MA, 2016, pp. 1-5

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://aws.amazon.com/autoscaling/

27

[10] H. Zhao, H. Lim, M. Hanif and C. Lee, "Predictive Container Auto-Scaling for

Cloud-Native Applications," 2019 International Conference on Information and

Communication Technology Convergence (ICTC), Jeju Island, Korea (South), 2019,

pp. 1280-1282.

[11] Y. Meng, R. Rao, X. Zhang and P. Hong, "CRUPA: A container resource

utilization prediction algorithm for auto-scaling based on time series analysis," 2016

International Conference on Progress in Informatics and Computing (PIC),

Shanghai, 2016, pp. 468-472

[12] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-based auto-

scaling for containerized applications,” Neural Computing and Applications, Aug.

2019.

[13] W.-Y. Kim, J.-S. Lee, and E.-N. Huh, “Study on proactive auto scaling for

instance through the prediction of network traffic on the container

environment,” Proceedings of the 11th International Conference on Ubiquitous

Information Management and Communication - IMCOM 17, 2017.

[14] T. Ye, X. Guangtao, Q. Shiyou, and L. Minglu, “An Auto-Scaling Framework

for Containerized Elastic Applications,” 2017 3rd International Conference on Big

Data Computing and Communications (BIGCOM), 2017.

[15] S. Taherizadeh and V. Stankovski, “Dynamic Multi-level Auto-scaling Rules for

Containerized Applications,” The Computer Journal, vol. 62, no. 2, pp. 174–197,

Aug. 2018.

[16] J. Sahni and D. P. Vidyarthi, “Heterogeneity-aware adaptive auto-scaling

heuristic for improved QoS and resource usage in cloud environments,” Computing,

vol. 99, no. 4, pp. 351–381, 2016.

[17] Z. A. Al-Sharif, Y. Jararweh, A. Al-Dahoud, and L. M. Alawneh, “ACCRS:

autonomic based cloud computing resource scaling,” Cluster Computing, vol. 20, no.

3, pp. 2479–2488, 2016.

[18] Kukade P.P and Kale G, “Auto-scaling of micro-services using

containerization”, Int J SciRes(IJSR) 2015;4(9):1960–3.

28

[19] C. Kan, "DoCloud: An elastic cloud platform for Web applications based on

Docker," 2016 18th International Conference on Advanced Communication

Technology (ICACT), Pyeongchang, 2016, pp. 478-483.

[20] L.R. Moore, K. Bean and T. Ellahi, “A Coordinated Reactive and Predictive

Approach to Cloud Elasticity.” CLOUD 2013, 2013

[21] S. Taherizadeh and M. Grobelnik, “Key influencing factors of the Kubernetes

auto-scaler for computing-intensive microservice-native cloud-based

applications,” Advances in Engineering Software, vol. 140, p. 102734, 2020.

[22] W.-Y. Kim, J.-S. Lee, and E.-N. Huh, “Study on proactive auto scaling for

instance through the prediction of network traffic on the container

environment,” Proceedings of the 11th International Conference on Ubiquitous

Information Management and Communication - IMCOM 17, 2017.

29

http://arduino.cc/en/uploads/Main/ArduinoUnoBack.jpg

