A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE
2020-021

Project Proposal Report
L.S. Jayasinghe

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology
Sri Lanka

February 2020
A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE
2020-021

Individual Project Proposal Report

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology
Sri Lanka

February 2020

Declaration

I declare that this is my own work and this proposal does not incorporate without
acknowledgment any material previously submitted for a degree or diploma in any
other university or institute of higher learning and to the best of our knowledge and
belief it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

Signature:

TIT 17012666 L.s Twas?nqke /77%?\1
l N

The above candidates are carrying out research for the undergraduate Dissertation

under my supervision. Y
s/
s S S
G
Signature of the SUpervisor: ...~ it ienin s,

ey

£

Date: .23 /02 [203C.............

Abstract

This research is regarding optimal deployment algorithm for microservices automated
deployment. Algorithm will ensuring that application has optimal overall performance and
availability. It maximizes performance and availability using the multi-objective algorithm.

there are several input metrics are used to generate an optimal deployment plan. A load
prediction map is used to identify the strongest dependencies of the microservice application
and resiliency level of the application used to identify critical microservices. also, system
concern about individual nodes resource power and individual microservices resource
consumption.

Using previously mentioned input metrics, the system minimizes the overall network
latency.it causes better performance. Also, it maintains the application overall availability.
generating randomize deployment plans, the system chooses the optimal deployment plan.
finally, that plan will perform the automated deployment.

Keywords: Auto-scaling, Docker, Kubernetes, Machine Learning, Microservices

TABLE OF CONTENTS

DECIANALION ...ttt et e b e sttt ettt nae e i
AADSTFACT ...ttt ettt et naees i
LEST OF FIQUIES .ttt ettt st ettt et e b e st et e b e v
LEST OF TADIES ...t sttt st a e vi
LiSt OF ADDIEVIATIONS.c..eiiiiiiieieeee e e vii
1.0 INEFOTUCTION.eiiiiiiiicieeie et s sb e 1
1.1 Background and LiteratUre.........ccceiveeeiieeiieeesieeeseeeeieeesreeesereesreeesreeennneeens 4
1.3 Research ProbIem..........ccccooiiiiiiiiiicc e e 8
2.0 ODJECLIVES ...eeeeieeeiie ettt ettt sttt e et s e e st e e s staeesnteeessbeeesaeessseesnteeeanneeans 9
W Y - T @ o] 1=od €L SRR 9
2.2 SPECITIC ODJECLIVES....eeeieieieiiee et cteeeree ettt e et st e e sereeerae e snreeesareeennaeas 9

K ROV 1=1 1 T o [o] [T | PP 10
3.1 Requirement Gathering........cocueeeiiei ittt e 10
3.1.1 Past ReSEArch ANAIYSIScceeiuiiiiiie ettt 10
3.1.2 Identifying EXIiStiNg SYSLEMScooiiieiiie ettt 10

3.2 FEaSIDIILY STUAYeveeeeieecee et sre e e 11
3.2.1 Technical FeasibDilityccocvvveiiiiiiiie e e 11
3.2.1.5 Optimization algorithm.ccoooeiiii e 12
3.2.1.6 cloud network and Kubernetes NetwWork.cccoecveveeieniniicnicniiicrenen 12
3.2.2 Schedule FeaSibilitycocviiiiiiiciie e e 13
3.2.3 ECONOMIC FeaSibilityccoouveeiieieiie e 13

3.3 ReqUITeMENT ANAIYSISoccuviieiiee ittt et e et ae e s reeeareas 13
3.4 SYSTEM ANAIYSIS ..eeevieieeiee ettt s e e e e e bae e st e e e s e e e ar e e b e e e saraeenreas 14
3.4.1 SOFtWAre SOIULION.......oouiiiiiiiiiieieccee e e 14
KRR I I [T o101 1Y T 1 TSR 14

3.5 System Development and Implementationcccveeevieeicie e, 16
3.5.1 Building the Final Optimization Algorithmcccceeeviiiiiie i 17

3.6 ProjeCt REQUITEMIENTS.....ccciiieiiee ettt ettt s e e sab e e e bee e s beeenneeas 18
3.6.1 Functional REQUIFEMENTSeieiiieiiiee ettt erre e s ae e s ree e e 18
3.6.2 Non-Functional ReQUIFEMENTScccvieiiiieiiee ettt 18

KN A =1 11 o PP 19

https://mysliit-my.sharepoint.com/personal/cdap_sliit_lk/Documents/2020%20REGULAR/2020-021-Students/1.%20Project%20Proposal/Report/IT17012966_2020-021_Proposal_Document.docx#_Toc33566498

T I L0 41 L TSR PPRRRRRURPRIN 21

4.0 Personnel and FACIHITIES.c...ooiiiiiiiieieeec e 22
5.0 COMMENCIANIZATIONc.veiiiiieiieeeece et 23
B.0 BUAGET ...ttt sttt e sb e sttt e b e sae et e st st e e e ae e 24
T.0 SUMIMANY «..eeiitieeeiie ettt ettt ettt et e st e st esab et e sabe e ebbeesabeeesabeeesabeesnnees 25
8.0 RETEIENCES. ...ttt sb ettt sttt b e s n e 26
0.0 APPENICES. ...ttt ettt ettt et sb e sttt e b e ettt b e et e e 27

List of Figures

Figure 1.1 Network Latency Between Multiple Region.........cccocoeiiiiiiiiiciiiciee, 3
Figure 1.1.1 Travelling Salesman Problem............cccoiiiiiiiiice e 4
Figure 1.1.2 Genetic AlQOrithm Parts.ccooiiiiiiiieiiieeecee e 5
Figure 1.1.3 Process Of Genetic AIgOrithm..........coooviiiiiiiiie e 6
Figure 3.2 Proposed Methodologycocveiiiiiiiiienie e 16
Figure 3.3 Gantt Chartccooiiiiiiiie e 21

List of Tables

Table 4.1 Personnel and RESOUICESoeeeeeee ettt e e e e e e e eeeaes
TabIe 6.1 BUAQEL......coeiiiiieiie et

Vi

List of Abbreviations

Abbreviation Description

AKS Azure Kubernetes Services

APM Application Performance Monitoring

AWS Amazon Web Service

IT Information Technology

SOA Service-Oriented Architecture

TOSCA Topology and Orchestration Specification for Cloud
Applications

VM Virtual Machine

IBM International Business Machines Corporation

Vi

1.0 Introduction

In 2020, most of the large application companies move to microservice architecture.
Such as Facebook, Netflix, and Amazon etc. These companies expect high availability,
maintainability, version control and performance from microservice architecture.
There are lot of configuration issues related to microservices. In 2013 docker is
introduced[1]. It is the solution that microservice is put into the single docker

containers.

Then it is the solution for most of the configuration’s issues. Now with a docker
container, the application can be deployed anywhere without any hesitation.

Problems are not over. Generally, microservice related applications used more than
100 microservices. Even Netflix used 700 microservices[2]. Now problem is the
management of these microservices. To solve this problem, container-orchestration
tools introduced. Kubernetes and Docker swarm are a few examples of container-

orchestration tools[3].

Availability is the most required none functional requirement in the microservices
model. The low availability cause of most of the system fails. To increase availability,
we can use multiple instances per microservices.it is called replication in the
microservice model. now one instance failed, there is another instance for the job done.
If all the instances are deployed on single nodes and that nodes are down, no instances

are available for executes task[4].

So multiple instances are deployed over the multiple nodes is very important to gain
more availability. Also if multiple nodes are located in multiple data centers, It gains

more availability.

The Microservice model is a great solution for gaining availability in the application.

But it dramatically reduces the whole application performance.

IBM Researchers said,

“We observed a significant overhead due to the microservice architecture; the
performance of the microservice model can be 79.1% lower than the monolithic model
on the same hardware configuration. The microservice model spent much more time
in runtime libraries to process one client request than the monolithic model by 4.22x

on a Node.js application server and by 2.69x on a Java EE application server.”[5]

BY analyzing the above statement. We can identify the performance as a main issue
in the microservice architecture. In considering the above scenario, the Microservice

model 79.1% low performance than the monolithic model.

If we consider the performance of the web application, we can measure performance
using the response time. If the average response time is lower across the whole
application, it can be identified as a good performance application. Computational
time, bandwidth and network latency directly affect response time. However a bigger
portion of the time reserve for the network latency. This metric is calculated by using
a round trip time[7].

It is measured in milliseconds. Even if the network has a high bandwidth rate, high
network latency time takes a long time to get the response back. This effect can be
experienced in the multiplayer gaming network. Because lower ping (RTT) players

play well than the other players.

in the microservice model, microservices intercommunicate with the rest API calls.
Also, these services are deployed over multiple nodes.so even send one request, it goes

through multiple nodes.

In the cluster network, nodes are interconnected with network links, when the request
goes through these links, network latencies added for each link. Also, if the nodes are
located very far, it increases the network latency. So that it reduces the overall

performance of the application[7].

312

204

184

121

96

150

146

192

276

312

176

84

126

306

186

285

288

292|146

142

312

206

186

96

130

148

146

192]

278

312

176

124

306

292|144

144

182

116

196

292

126

144

142

120

300

180

140

318

192

118

&

302

132

146

140

19

3.

18|

312

178

178

297|138

Brazil So 312[312

132

144

322

114

19:

60

06|

138]

17,

08|

16|

300

180

184

188302

170

132

20

198

30

98

152

178

182

15

80

114

104

108

06|

94 1208

140

30

208

38

108

162

186

192

24

88

124

114

210

214

104|216

302

218

222

198

120}

122

116

110

216

132

146

24

264

262

114

110

30

29

236

126] 4

144

30

112

132

157

162

12

128

228

246

120

114

16

110(222

322

208

188

52

56

184

198

214

66

334

182

178

126

126

194/ 86

118

35

86

168

181

186

102

92

188

192

82 |194

114

38

90

164/

176

182

106

212

222

93

190

194

85 |196

102

10

218

206

32

129

152

14

112

106

116

194

44

116

164

10

96

100

20 |102

104

114

10

218

20

142

164

16

120

124

302

98

108

210

28

132

160

112

116

152

162

168

204

232

247

100

374

214

161

160

136

160

170

168

216

232

246

238

100

14

160

160

146

178

186

181

212

200

228

242

234

84

362

210

156

154

140

192

186

206

194

221

88

356

204

150

148

215

134

198

24

98

106

139

164

84

122

114

a4

110

88

16

26

36

30

145

150

26

124

130

124

106

32

44

247

158

174

32

138

142

170

116

24

36

240)

152

168

26

130

135

164

o entra 176[176

52

106/

116

138

132

124

222

252

120

18

106

34

o 94|92

226

151

138

162

68

202

166

180

174

34

148

94

94

162

168

o dia 126|124

232

129

116

142

132

100

145

158

152

34

279

48

48

140

200

152

164

164

374

150

168

150

292

166

158

174

17

186

180

296

254

258

164

276

114

182

14

214

210}

26

32

26

148

106

110

118

178

10

211

10|

10

36

30

144]

102

106

16 1110

186(186

190

108

96

112

161

156

150

124

138

130

218

94

o 186(186

14

194

112

100

116

160

160

154

148

130

142

135

220

84

122| 28

96

78

17

14

224

220

212

10

29

22

104

158

116

120

10 122

S0

98

80

18

18

15

12

30

106

162

118

122

12 1124

170(172

36

44

48

120

132

126

118

142

148

108

142

136

182

114

124|236

94

104

85

10

101

22

15

112

160

118

122

126/

dia 146|144

08|

16|

194

196

116

102

118

120

114

108

214

130]

144]

138

222

52

114

28

28

122

142(144

64

72

64

58

138

148

154

104

129

134

54

128

170

164

34

168

136

144220

162(164

56

66

66

71

142

152

148

96

126

46

130

164

156

44

160

153

252

256

135

146|212

22

Figure 1.1 Network Latency Between Multiple Regions.

In the present, there are a lot of tools available for automated deployment. Even the

tool like Kubernetes performs automated deployment. But there are not tools available

for generating optimal deployment strategy plans for the microservice application.

This strategic plan describes how microservices are deployed over the node network.

It is guaranteed that microservice application has optimal performance and

availability.

1.1 Background and Literature

There are not any tools that come up with the algorithm for optimal deployment
strategy. But there are a lot of usages of optimization algorithms.

One of the Most popular optimization problems is the traveling salesman problem. The
problem is to generate the shortest pathing route and visits to each city per once a time.
also, the path should be covering all the given cities and return to the origin city. It is
called the NP-hard problem[9].

on

k

0—_on o
ol O o .

e B km

ta' 0 km
9 km o ‘—HWG \ o
/om
6 (6

15 km

Total = 48 km Total = 62 km

Figure 1.1.1 Travelling Salesman Problem Graph

To solve TSP, programmers can use exact algorithms. These algorithm is trying all
combination of pathing solutions (brute-force search). Among the solution, the
algorithm selects the cheapest one. It is the shortest path among all solutions. Always
the Exact algorithm gives the best solution. But problems will come when the number
of combinations is increased. This consumes substantial computational power and

time.

Heuristic and approximation algorithms used to avoid this previous issue.it always
generates a better solution but it is not the best solution. Compare with the exact

algorithm, heuristic algorithm consumes very less time[10].

Heuristic Algorithms:
e swarm intelligence
e tabu search
e simulated annealing

e genetic algorithm

In this research, the genetic algorithm will be used to solve our problems. The genetic
algorithm was introduced in 1960, based on the theory of evolution. Optimal algorithm
problems are solved by using biologically inspired operations. Such as mutation,

crossover, and selection[11][12].

Genetic Algorithms

(=]
L=J

a1 [afafola 1r | Gang a1 [afo[ofa
HhH
,'-,;: Chromescme A2 1 [1)1)1]1]1

Ad (11|01 1|0| |Population

Figure 1.1.2 Genetic Algorithm Parts

Part of the genetic algorithm

e Chromosome: a single solution.

e Genes: one element of a single solution.

e population: the process is started by the beginning of the initial population.
fittest chromosomes are selected to the next generation by calculating the
fitness score.

e Fitness function: for selecting the next generation, genetic algorithm use

fitness function.it has a score calculation method.

Best

chromosome

End

Figure 1.1.3 Process Of Genetic Algorithm

Set GA parameters

w

Generate initial random
population

|

Evaluate fitness of each
chromosome in the "
population

Are optimization
ftermination
criteria met?

Parents selection for next
generation

¥

Crossover of
Parents chromasome

¥

Mutation of
chromosome

Mew population

Operations of the genetic algorithm:

Selection: this is done by the fitness function.

Crossover: combine two chromosomes.

Mutation: modify single genes or multiple genes

1.2 Research Gap

There is one related research found on the web. It is an optimal and automated
deployment for microservices. That research describes how the microservices deploy
over nodes and automated deployment. To implement their model system, they used
a dependency map, each microservice resource consumption, each node resource

power and cost[13].

In the research paper, they do not mention that the system model can increase
performance or availability. But they mention that minimizing the total cost is their

optimization problem.

In our research, we mainly focus on microservices performance and availability. The
system will use predicted dependency map, node resource power, each microservice

resource consumption, resiliency levels and node latency map as input metrics.

The system will guarantee to generate better optimal deployment than existed
deployment plan.it should be better performance and the optimal availability than the

previous plan.

1.3 Research Problem

All the application system has pre-defined non- functional requirements. Such as
availability, adaptability, durability, interoperability, reliability, etc. In this research,

we are mainly focused on performance and reliability.

When microservices are deployed in the cloud cluster, K8s is used for our primary
tools. Using this tool, we can also perform the automated deployment. But it is not
intelligent. It only has done which are scheduled by us. Also when new microservice

comes, it is difficult to maintain the whole system.

Nodes are located in multiple places in the cloud. Some scenarios, it is located in
another country. It is called a region. In the same region, there are multiple data centers.
These distances create network latency within a cluster. Even in the same data center,

there is some network latency[8].

If whole microservice applications deploy in one virtual machine. we can avoid from
previously mentioned network latency.so that it also increases performance. But the

problem is that the solution reduces availability.

Before microservices are deployed, we have no idea about current microservices
resource consumption and cluster resource power (including all the nodes). After
application is deployed, if resource power is not enough to execute all the requested
tasks, the whole application will be crash. Also, if resource power is larger than the

required resource power, it wastes a lot of money.

Our main target is to increased overall performance without losing availability. Also,

each microservices should be well fit node resource power.

2.0 Objectives
2.1 Main Objective

To identify key factors that lead to performance reduction in microservice deployments and

come up with an optimal deployment strategy .

2.2 Specific Objectives

The following are the sub-objectives of conducting this research.

e To increase the efficiency of microservices deployments by applying the
metrics used in network analysis, such as centrality and resilience measures,
and link predictions on identified dependency measurements.

e To develop a business intelligence dashboard to evaluate performance and
monitor microservice deployments.

e To identify key factors that lead to performance reduction in microservice

deployments and come up with an optimal deployment strategy.

3.0 Methodology

3.1 Requirement Gathering

Requirement gathering was mainly performed through performing an extensive
analysis of past research conducted throughout recent years, identification and analysis

of the existing systems, as well as reading through a variety of online resources.

3.1.1 Past Research Analysis

The past research analysis process was mainly performed through reading and
analyzing a wide array of research publications published through recent years. Key
topics of interest included microservice deployment optimization, microservice
performance engineering, microservice governance, centrality evaluation, load
prediction and forecasting, resource prediction and optimization, resiliency analysis,
and microservice monitoring. During the research analysis process, the primary focus
was given in the identification of the methodology used, tools used, experiments
conducted, as well as the overall findings of the research with respect to performance

optimization in microservices.

3.1.2 Identifying Existing Systems

A thorough analysis was conducted on a variety of existing APM tools as well as other
similar systems, that were available to use with the Kubernetes platform. This process
was mainly done by visiting the various online sources and analyzing the available
documentation and videos published. During this process, the primary focus was given

in identifying the key features and drawbacks that were present in the tools analyzed.

10

Even if there is no existing system directly related to this research. There are automated
deployment tools and related researches. That would be useful for testing the final
product.

3.2 Feasibility Study

3.2.1 Technical Feasibility

3.2.1.1 Knowledge on Kubernetes

In order to develop the proposed optimization model, all members are required to have
basic knowledge of Kubernetes and its relevant components. Members should be able
to perform basic configuration and should have sufficient knowledge and practical

experience on how to deploy microservices through Kubernetes.

3.2.1.2 Knowledge on APM tools

In order to develop the proposed optimization model, all members are required to have
quite an in-depth understanding of the existing APM tools and the features and
drawbacks present. The members should also have sufficient knowledge of
configuring and APM tools selected for this research as well as knowledge on how to

integrate the selected APM tools with the optimization model.

3.2.1.3 Knowledge on Resiliency Evaluation and Chaos Engineering

For the resiliency evaluation system to be developed, a thorough knowledge of “Chaos
Engineering” and knowledge related Chaos Engineering tools are required.
Furthermore, members should have sufficient knowledge of configuring and

integrating the selected Chaos Engineering tool with the optimization model.

11

3.2.1.4 Machine Learning Knowledge

In order to develop the proposed optimization model, all members are required to have
quite basic knowledge of machine learning basics as well as time series analysis.
Members should be aware of the time series prediction models as well as knowledge
on how to integrate the relevant models with machine learning and develop basic
algorithms. Furthermore, members should also have a basic understanding of the
Python programming language and related Python machine learning and time series

libraries.

3.2.1.5 Optimization algorithm.

Optimization algorithms use a wide variety of fields.it is an applied mathematics
field that part of data science. These optimization algorithms reach the optimal
solution By maximizing or minimizing variables. Different type of optimal algorithm
has different accuracy level and performance level. It is very important to select a

better algorithm for producing a better result.

3.2.1.6 cloud network and Kubernetes network.

Cloud network consist of WAN, MAN, LAN and virtual networks. Also Kubernetes
network includes node network and pod network. We have awareness about how to

communicates between microservice using previous mention networks.

12

3.2.2 Schedule Feasibility

The proposed project should be able to be implemented within the scheduled time
period of about five months, with about two months allocated for research, requirement
gathering, and analysis. Finally, the proposed project should be completed within the

end of 7 months, including sufficient testing.

3.2.3 Economic Feasibility

The cost of the proposed project should be as minimal as possible in order for it to be
included and accepted in the existing APM tool market in Kubernetes. This is mainly
due to the fact that most APM tools and solutions offered currently with respect to

Kubernetes are often opensource.

3.3 Requirement Analysis

During the requirement analysis phase, key information obtained during the
requirement gathering phase is analyzed. Analyzing the gathered information will
prove to be of most importance to the research process, since key information
regarding the potential challenges that may be faced, the potential complexity of tasks
involved, as well as other key information regarding the tools used by other research

teams will be easily identifiable.

Also, since the research carried out a software-based approach, by performing
requirement analysis, key information regarding the schedule, technical and economic
feasibility was realized and helped in aligning research goals such that the research
carried out does not exceed the technical skills of the research members while

maintaining the expected deadlines.

13

In the research paper analysis, the primary focus will be given to the analysis of the
methodology and tools used, as well as the outcomes of the research conducted. This
helps in improving the decision-making process in the current research by providing
credible evidence that will help in deciding upon the direction in which the current
research should progress by highlighting the research gaps.

Furthermore, analyzing the online resources regarding the available tools will help in
the identification of the existing tools that posses’ similar features to what the current
research aims at implementing and help in identifying the research gap by comparing
the existing feature with those that are proposed. Also, by analyzing tools that could
prove to be of use in the implementation of the current research, a clear idea regarding
the features they possess, and how they could be integrated into the current research
could be identified.

3.4 System Analysis

3.4.1 Software Solution

3.4.1.1 Input Metrics

There are several input metrics go through optimal deployment algorithm. Such as
e Predicted Dependency Map

This is the predicted dependency map that describes the average number of requests between
pairs of microservices in a certain time period.

e Node Latency Map

This describe network latency between nodes.
e Resiliency Level

This describe resiliency level of each node.

e System Runtime Information
i. Node resource power
ii. Microservice resource consumption

14

3.4.1.3 Analysis and Rearrangement

The first system obtains pairs of microservice dependency levels from the predicted
dependency map. these pairs are rearranged according to strong dependency.as an example,
most communicated a couple of microservices have the strongest dependency.

After that, analyze the resiliency level of microservices. Using a resiliency methods system
can identify the most critical microservices in the System. This metric can be used to increase
availability.

Next, calculate the quickest path between node by using node latency map. near located
nodes have low network latency than far located nodes. If most communicate couple of
microservice located in near nodes, whole application makes more score

These metrics are rearranged according to the importance level. Most important metrics
more effect on the fitness score function.

3.4.1.4 Genetic Algorithm for Optimal Deployment

After metrics gathering and rearrangement, all metrics go through the Genetic algorithm.
Algorithm will be implemented by using the below activities.

e population: we consider one deployment map as one chromosome. Also, the existing
deployed map part of the population. Therefore, algorithms always guarantee to
generate a better solution than the existing deployment map.

e crossover constraints: all the microservice must be deployed on the cluster. In each
node, microservices total resource consumptions must be lower than node resource
power.

e selection: more performance deployment maps are selected for the next generation.
the fitness function is mainly based on performance and availability for microservice
deployment.

e fitness function: If a strong dependent pair of microservices deployed in the near

node or same node, it is the point that makes more score. Also, there is a scoring
method for availability by counting multiple instances for a microservice.

15

Configure cluster based on

generated deployment

3.5 System Development and Implementation

The implementation process of the proposed model will be performed as per Figure

3.2 given below.

strategy

Collect metrics

Optimal
Deployment

Strategy

— % Kubernetes Cluster

Analyze metrics

Predicted Load Prediction

and centrality
evaluation

utilization values

and centrality
measures

Resiliency

Evaluation Resiliency Analys|

is

Generate
Dependency Map

Evaluated

Dependency level

Output to dashboard

>

Figure 3.2: Proposed Methodology

pJeoqusep 01 IndinO

All the obtained metrics go through the optimization algorithm. Whole system will be

planned to run on master node as a single application. Admin can access to the dashboard

using particular port of the master node.

16

3.5.1 Building the Final Optimization Algorithm

The genetic algorithm does not guarantee the generation of the best plan, but it always
generates a better plan. After selecting the better strategy plan, the system can perform
the automated deployment. To obtain node resource power and microservice resource
consumption, Istio will be used. Python will be used for implementing the algorithm
whereas libraries such as NetworkX be used for dealing with the node latency map.

Python GA library will be used to perform the genetic algorithm part.
Tools
e |stio

Programming Languages

e Python

Key Python libraries expected to be used

e NetworkX
e Numpy
e GA

17

3.6 Project Requirements

3.6.1 Functional Requirements

The functional requirements for the proposed model are as follows:

e Users should be able to view the optimal deployment strategy for a given
cluster.

e Users should be able to view possible deployment suggestions in order to
optimize the deployment.

e The system should analyze the resiliency of the identified microservices in the
cluster.

e The system should be response to the Horizonal-scaling and Vertical-scaling.

e The optimal deployment strategy for a particular deployment should be
determined using the predicted load, evaluated centrality measures and

resiliency evaluation.

3.6.2 Non-Functional Requirements

The following are the non-functional requirements that are primarily focused during

the development of the proposed model.

e Usability
e Reliability
e Availability

e Interoperability

e Performance

18

3.7 Testing

The testing phase is a key phase in the development process of this research, and it is
expected to be conducted throughout the implementation process of this research
project. Initial testing will be performed on a component level basis in which each
component will be tested individually, and once a specific component has been
developed, the testing process will begin. During component-level testing, key
features and functions developed will be evaluated to ensure they are functioning as
required Once all components have been completely developed, integration testing
will be performed, and the final developed model will be evaluated to ensure the
overall performance is improved in the microservice cluster through the use of the
proposed governance model. Here, key factors such as latency and its related
measures will be used to evaluate the performance of the proposed governance

model.

For this research, a test-bed of consisting of about 50 microservices is expected to be
deployed in a Kubernetes cluster. Furthermore, a load-generation tool is expected to

be used in order to generate sufficient metrics in order to develop the co-dependency
network. These capture metrics will then be used in the load prediction and resiliency

evaluation components for further analysis.

Many constraints are using to develop this optimal deployment algorithm. Before
practical deployment tests, test the theoretical constraint are worked correctly or not.
Especially in the fitness function, we should verify and validate fitness function

scoring methods.

As an example, if the fitness function calculate score in wrong way, whole application
is fails. So that go to the practical deployment testing is unnecessary thing, if fail the

theoretical testing.

19

We hope to create a formula to evaluate the overall performance of the microservice

model. This is the proposed formula:

l=n [=n

ZAVG.R@S.Timel"E‘NK ZNJ
[=1 .
=1

Figure 3.7.1 performance formula

This formula calculates the average response time per request. It means that it
calculates the Sum of response time of all the request divide by sum of all request in

certain time period.

I=fair of microservice link identifier.

n=number of microservice.

AVG.Res.Time=specific link average response time.

N=number of requests for specific link.

We compare the performance of optimal deployment and performance of previous

deployment version. This result will be guarantee that research successful or failure.

20

The proposed timeline for the project is as follows.

3.8 Time Line

O 7 uonEeuasald ssalboig

uopejuasald pue poday (eul4

O | uopeluasalg ssalboiy

pieeqysep ynm wypobie uoneziundo jo uonesBaju)

wyofije ueneziwndo jeuy Buidejareg
wayshs sisheue fouapsal Buidojanag
wyiuofije uopaipaid peoj Guidojanag

dew fouspuadap Guidojaasg

l sisfjeue pue uoldeIXa LB

l UOIEaI JB)SN|D BIIAIBSOII
O Uo[EIBWN0J SHS

uonejuasald pue poday |esodoid 1aloig

O uoIssILqNg Japey) joalold

Figure 3.3: Gantt Chart
21

4.0 Personnel and Facilities

Name

Key Tasks

L.S Jayasinghe

Retrieval of the analyzed outputs from the
load prediction, dependency analysis map,

as well as resiliency evaluation process.

Formatting and data manipulation of the
data received from the above-mentioned
output processes, in order to be fed as
inputs to the optimization algorithm.

Development of final optimization
algorithm making use of Machine
Learning, which takes in inputs from the
load prediction, dependency analysis map,
and resiliency evaluation process, and
proposes the suggested optimal

deployment strategy.

crossover constraints creation.

. fitness function creation.

Integrate with the Ul dashboard in order to
display the optimal deployment strategy to
the user.

Optimal deployment map will be showed.

Suggestion list will be showed.

22

e Evaluate the effect of the developed
optimization algorithm with respect to the
performance of the microservice cluster.

1. Theoretically evaluate the model.

2. Practically evaluate the model.

Table 4.1: Personnel and Resources

5.0 Commercialization

The commercialization of this research project is mainly considered through the
development of a tool through the use of the proposed model. The developed tool will
be developed as a Business Intelligence Dashboard which makes use of the proposed
model to provide developers and system administrators an easy and efficient way in
which to optimize their Kubernetes deployment by aiming to provide the following

benefits.

e Visualize the level of inter-dependency among deployed microservices.

e Receive suggestions in potential ways to optimize the performance and
configure current deployments and automatically perform deployments based
on the suggestions.

e Visualize comparison of previous deployed microservice map vs currently

generated map.

The developed Business Intelligence Dashboard will allow users to access all the
above-mentioned features and provide a holistic view of their deployments. Hence,
this tool will be mainly targeted to be marketed as an APM tool for Kubernetes
deployments for system administrators and developers. Due to the wide variety of
APM tools currently available in the market which are mostly free and opensource, the

initial plan is to develop this dashboard into an opensource tool in order to enter the

23

current market space effectively. However, throughout the years, a freemium based

marketing strategy will be adopted with the inclusion of additional features.

6.0 Budget

The main aspect of this research is primarily focused on the development of an
optimization model that aids in the deployment of microservices through Kubernetes,
and hence it is primarily a software-based solution with no inclusion of external

hardware.

However, there will be some costs expected to be incurred, as given in the table below.

Internet use and web hosting 6000 LKR
Publication costs 2000 LKR
Stationary 2000 LKR
TOTAL 10000 LKR

Table 6.1: Budget

Note: Azure Student subscription with $100 of free credit for 12 months will be used
for this project. Therefore, resource creation for the VMs needed for testing and
creation of the Kubernetes cluster to be used for implementation purposes could be

obtained without any additional cost and hence is not included in the budget.

24

7.0 Summary

The primary objective of this proposed research is to develop a model that aims to
improve microservice governance in Kubernetes deployments through a network

science-based approach.

The model is developed primarily through a microservice dependency map based on
metric analysis, and performing load prediction, and resiliency evaluation on the
microservices identified using the dependency map. Finally, the outputs of these
components will be fed into an optimization algorithm and display an optimal

deployment strategy to the user.

The proposed model will ultimately be able to provide developers and system
administrators an overview of their current deployment configurations with respect to
performance and aid in governing their microservice deployments such that the

optimal performance is achieved.

25

8.0 References

[1]"docker history”, Docker Documentation, 2020. [Online]. Available:
https://docs.docker.com/engine/reference/commandline/history. [Accessed: 24-
Feb- 2020].

[2]"How Netflix works: the (hugely simplified) complex stuff that happens every time
you hit Play", Medium, 2020. [Online]. Available:
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-
simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b.
[Accessed: 24- Feb- 2020].

[3]"8 Container Orchestration Tools to Know - Linux.com", Linux.com, 2020.
[Online]. Awvailable: https://www.linux.com/news/8-open-source-container-
orchestration-tools-know/. [Accessed: 25- Feb- 2020].

[4]Vaadin.com, 2020. [Online]. Available: https://vaadin.com/blog/microservices-
high-availability. [Accessed: 25- Feb- 2020].

[5]"Evaluating Critical Performance Needs for Microservices and Cloud-Native
Applications”, Medium, 2020. [Online]. Available:
https://medium.com/netifi/evaluating-critical-performance-needs-for-
microservices-and-cloud-native-applications-7675c50a8460. [Accessed: 25-
Feb- 2020].

[6]"Test Azure virtual machine network latency in an Azure virtual
network", Docs.microsoft.com, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-test-
latency. [Accessed: 25- Feb- 2020].

[7]"Azure network round trip latency statistics”, Docs.microsoft.com, 2020. [Online].
Available: https://docs.microsoft.com/en-us/azure/networking/azure-network-
latency. [Accessed: 25- Feb- 2020].

[8]"Co-locate Windows Azure VMs - Azure Windows Virtual
Machines", Docs.microsoft.com, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/co-location.
[Accessed: 25- Feb- 2020].

[9] " Travelling salesman problem™, En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Travelling_salesman_problem. [Accessed: 25- Feb-
2020].

[10]"Mathematical optimization", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Mathematical_optimization. [Accessed: 25- Feb-
2020].

[11]"Genetic algorithm", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Genetic_algorithm. [Accessed: 25- Feb- 2020].

26

[12]"Genetic Algorithms - Introduction - Tutorialspoint™, Tutorialspoint.com, 2020.

[Online]. Available:
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduc
tion.htm. [Accessed: 25- Feb- 2020].

[13]M. Bravetti, S. Giallorenzo, J. Mauro, 1. Talevi and G. Zavattaro, "Optimal and
Automated Deployment for Microservices”, Fundamental Approaches to

Software Engineering, pp. 351-368, 2019. Available: 10.1007/978-3-030-16722-
6_21 [Accessed 25 February 2020].

[14]"Kubernetes ~ Scheduler”, Kubernetes.io, = 2020. [Online]. Available:

https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/. [Accessed: 25-
Feb- 2020].

9.0 Appendices

27

28

http://arduino.cc/en/uploads/Main/ArduinoUnoBack.jpg

