

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

L.S. Jayasinghe

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Individual Project Proposal Report

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

i

Declaration

ii

Abstract

This research is regarding optimal deployment algorithm for microservices automated

deployment. Algorithm will ensuring that application has optimal overall performance and

availability. It maximizes performance and availability using the multi-objective algorithm.

there are several input metrics are used to generate an optimal deployment plan. A load

prediction map is used to identify the strongest dependencies of the microservice application

and resiliency level of the application used to identify critical microservices. also, system

concern about individual nodes resource power and individual microservices resource

consumption.

Using previously mentioned input metrics, the system minimizes the overall network

latency.it causes better performance. Also, it maintains the application overall availability.

generating randomize deployment plans, the system chooses the optimal deployment plan.

finally, that plan will perform the automated deployment.

Keywords: Auto-scaling, Docker, Kubernetes, Machine Learning, Microservices

iii

TABLE OF CONTENTS

Declaration ... i

Abstract .. ii

List of Figures .. v

List of Tables ... vi

List of Abbreviations .. vii

1.0 Introduction ... 1

1.1 Background and Literature ... 4

1.3 Research Problem .. 8

2.0 Objectives .. 9

2.1 Main Objective .. 9

2.2 Specific Objectives ... 9

3.0 Methodology ...10

3.1 Requirement Gathering..10

3.1.1 Past Research Analysis ..10

3.1.2 Identifying Existing Systems ...10

3.2 Feasibility Study ...11

3.2.1 Technical Feasibility ..11

3.2.1.5 Optimization algorithm. ...12

3.2.1.6 cloud network and Kubernetes network. ...12

3.2.2 Schedule Feasibility ...13

3.2.3 Economic Feasibility ..13

3.3 Requirement Analysis ..13

3.4 System Analysis ..14

3.4.1 Software Solution ...14

3.4.1.1 Input Metrics ..14

3.5 System Development and Implementation ..16

3.5.1 Building the Final Optimization Algorithm ..17

3.6 Project Requirements ...18

3.6.1 Functional Requirements ..18

3.6.2 Non-Functional Requirements ..18

3.7 Testing...19

https://mysliit-my.sharepoint.com/personal/cdap_sliit_lk/Documents/2020%20REGULAR/2020-021-Students/1.%20Project%20Proposal/Report/IT17012966_2020-021_Proposal_Document.docx#_Toc33566498

iv

3.8 Time Line ..21

4.0 Personnel and Facilities ..22

5.0 Commercialization ...23

6.0 Budget ...24

7.0 Summary ..25

8.0 References ...26

9.0 Appendices ..27

v

List of Figures

Figure 1.1 Network Latency Between Multiple Region ... 3

Figure 1.1.1 Travelling Salesman Problem .. 4

Figure 1.1.2 Genetic Algorithm Parts. ... 5

Figure 1.1.3 Process Of Genetic Algorithm. .. 6

Figure 3.2 Proposed Methodology .. 16

Figure 3.3 Gantt Chart ... 21

vi

List of Tables

Table 4.1 Personnel and Resources ... 21

Table 6.1 Budget ... 23

vii

List of Abbreviations

Abbreviation Description

AKS Azure Kubernetes Services

APM Application Performance Monitoring

AWS Amazon Web Service

IT Information Technology

SOA Service-Oriented Architecture

TOSCA Topology and Orchestration Specification for Cloud

Applications

VM

IBM

Virtual Machine

International Business Machines Corporation

1

1.0 Introduction

In 2020, most of the large application companies move to microservice architecture.

Such as Facebook, Netflix, and Amazon etc. These companies expect high availability,

maintainability, version control and performance from microservice architecture.

There are lot of configuration issues related to microservices. In 2013 docker is

introduced[1]. It is the solution that microservice is put into the single docker

containers.

Then it is the solution for most of the configuration’s issues. Now with a docker

container, the application can be deployed anywhere without any hesitation.

Problems are not over. Generally, microservice related applications used more than

100 microservices. Even Netflix used 700 microservices[2]. Now problem is the

management of these microservices. To solve this problem, container-orchestration

tools introduced. Kubernetes and Docker swarm are a few examples of container-

orchestration tools[3].

Availability is the most required none functional requirement in the microservices

model. The low availability cause of most of the system fails. To increase availability,

we can use multiple instances per microservices.it is called replication in the

microservice model. now one instance failed, there is another instance for the job done.

If all the instances are deployed on single nodes and that nodes are down, no instances

are available for executes task[4].

So multiple instances are deployed over the multiple nodes is very important to gain

more availability. Also if multiple nodes are located in multiple data centers, It gains

more availability.

The Microservice model is a great solution for gaining availability in the application.

But it dramatically reduces the whole application performance.

IBM Researchers said,

2

“We observed a significant overhead due to the microservice architecture; the

performance of the microservice model can be 79.1% lower than the monolithic model

on the same hardware configuration. The microservice model spent much more time

in runtime libraries to process one client request than the monolithic model by 4.22x

on a Node.js application server and by 2.69x on a Java EE application server.”[5]

BY analyzing the above statement. We can identify the performance as a main issue

in the microservice architecture. In considering the above scenario, the Microservice

model 79.1% low performance than the monolithic model.

If we consider the performance of the web application, we can measure performance

using the response time. If the average response time is lower across the whole

application, it can be identified as a good performance application. Computational

time, bandwidth and network latency directly affect response time. However a bigger

portion of the time reserve for the network latency. This metric is calculated by using

a round trip time[7].

It is measured in milliseconds. Even if the network has a high bandwidth rate, high

network latency time takes a long time to get the response back. This effect can be

experienced in the multiplayer gaming network. Because lower ping (RTT) players

play well than the other players.

in the microservice model, microservices intercommunicate with the rest API calls.

Also, these services are deployed over multiple nodes.so even send one request, it goes

through multiple nodes.

In the cluster network, nodes are interconnected with network links, when the request

goes through these links, network latencies added for each link. Also, if the nodes are

located very far, it increases the network latency. So that it reduces the overall

performance of the application[7].

3

Figure 1.1 Network Latency Between Multiple Regions.

In the present, there are a lot of tools available for automated deployment. Even the

tool like Kubernetes performs automated deployment. But there are not tools available

for generating optimal deployment strategy plans for the microservice application.

This strategic plan describes how microservices are deployed over the node network.

It is guaranteed that microservice application has optimal performance and

availability.

4

1.1 Background and Literature

There are not any tools that come up with the algorithm for optimal deployment

strategy. But there are a lot of usages of optimization algorithms.

One of the Most popular optimization problems is the traveling salesman problem. The

problem is to generate the shortest pathing route and visits to each city per once a time.

also, the path should be covering all the given cities and return to the origin city. It is

called the NP-hard problem[9].

Figure 1.1.1 Travelling Salesman Problem Graph

To solve TSP, programmers can use exact algorithms. These algorithm is trying all

combination of pathing solutions (brute-force search). Among the solution, the

algorithm selects the cheapest one. It is the shortest path among all solutions. Always

the Exact algorithm gives the best solution. But problems will come when the number

of combinations is increased. This consumes substantial computational power and

time.

Heuristic and approximation algorithms used to avoid this previous issue.it always

generates a better solution but it is not the best solution. Compare with the exact

algorithm, heuristic algorithm consumes very less time[10].

5

Heuristic Algorithms:

• swarm intelligence

• tabu search

• simulated annealing

• genetic algorithm

In this research, the genetic algorithm will be used to solve our problems. The genetic

algorithm was introduced in 1960, based on the theory of evolution. Optimal algorithm

problems are solved by using biologically inspired operations. Such as mutation,

crossover, and selection[11][12].

 Figure 1.1.2 Genetic Algorithm Parts

Part of the genetic algorithm

• Chromosome: a single solution.

• Genes: one element of a single solution.

• population: the process is started by the beginning of the initial population.

fittest chromosomes are selected to the next generation by calculating the

fitness score.

• Fitness function: for selecting the next generation, genetic algorithm use

fitness function.it has a score calculation method.

6

 Figure 1.1.3 Process Of Genetic Algorithm

Operations of the genetic algorithm:

• Selection: this is done by the fitness function.

• Crossover: combine two chromosomes.

• Mutation: modify single genes or multiple genes

7

1.2 Research Gap

There is one related research found on the web. It is an optimal and automated

deployment for microservices. That research describes how the microservices deploy

over nodes and automated deployment. To implement their model system, they used

a dependency map, each microservice resource consumption, each node resource

power and cost[13].

In the research paper, they do not mention that the system model can increase

performance or availability. But they mention that minimizing the total cost is their

optimization problem.

In our research, we mainly focus on microservices performance and availability. The

system will use predicted dependency map, node resource power, each microservice

resource consumption, resiliency levels and node latency map as input metrics.

The system will guarantee to generate better optimal deployment than existed

deployment plan.it should be better performance and the optimal availability than the

previous plan.

8

1.3 Research Problem

All the application system has pre-defined non- functional requirements. Such as

availability, adaptability, durability, interoperability, reliability, etc. In this research,

we are mainly focused on performance and reliability.

When microservices are deployed in the cloud cluster, K8s is used for our primary

tools. Using this tool, we can also perform the automated deployment. But it is not

intelligent. It only has done which are scheduled by us. Also when new microservice

comes, it is difficult to maintain the whole system.

Nodes are located in multiple places in the cloud. Some scenarios, it is located in

another country. It is called a region. In the same region, there are multiple data centers.

These distances create network latency within a cluster. Even in the same data center,

there is some network latency[8].

If whole microservice applications deploy in one virtual machine. we can avoid from

previously mentioned network latency.so that it also increases performance. But the

problem is that the solution reduces availability.

Before microservices are deployed, we have no idea about current microservices

resource consumption and cluster resource power (including all the nodes). After

application is deployed, if resource power is not enough to execute all the requested

tasks, the whole application will be crash. Also, if resource power is larger than the

required resource power, it wastes a lot of money.

Our main target is to increased overall performance without losing availability. Also,

each microservices should be well fit node resource power.

9

2.0 Objectives

2.1 Main Objective

To identify key factors that lead to performance reduction in microservice deployments and

come up with an optimal deployment strategy .

2.2 Specific Objectives

The following are the sub-objectives of conducting this research.

• To increase the efficiency of microservices deployments by applying the

metrics used in network analysis, such as centrality and resilience measures,

and link predictions on identified dependency measurements.

• To develop a business intelligence dashboard to evaluate performance and

monitor microservice deployments.

• To identify key factors that lead to performance reduction in microservice

deployments and come up with an optimal deployment strategy.

10

3.0 Methodology

3.1 Requirement Gathering

Requirement gathering was mainly performed through performing an extensive

analysis of past research conducted throughout recent years, identification and analysis

of the existing systems, as well as reading through a variety of online resources.

3.1.1 Past Research Analysis

The past research analysis process was mainly performed through reading and

analyzing a wide array of research publications published through recent years. Key

topics of interest included microservice deployment optimization, microservice

performance engineering, microservice governance, centrality evaluation, load

prediction and forecasting, resource prediction and optimization, resiliency analysis,

and microservice monitoring. During the research analysis process, the primary focus

was given in the identification of the methodology used, tools used, experiments

conducted, as well as the overall findings of the research with respect to performance

optimization in microservices.

3.1.2 Identifying Existing Systems

A thorough analysis was conducted on a variety of existing APM tools as well as other

similar systems, that were available to use with the Kubernetes platform. This process

was mainly done by visiting the various online sources and analyzing the available

documentation and videos published. During this process, the primary focus was given

in identifying the key features and drawbacks that were present in the tools analyzed.

11

Even if there is no existing system directly related to this research. There are automated

deployment tools and related researches. That would be useful for testing the final

product.

3.2 Feasibility Study

3.2.1 Technical Feasibility

3.2.1.1 Knowledge on Kubernetes

In order to develop the proposed optimization model, all members are required to have

basic knowledge of Kubernetes and its relevant components. Members should be able

to perform basic configuration and should have sufficient knowledge and practical

experience on how to deploy microservices through Kubernetes.

3.2.1.2 Knowledge on APM tools

In order to develop the proposed optimization model, all members are required to have

quite an in-depth understanding of the existing APM tools and the features and

drawbacks present. The members should also have sufficient knowledge of

configuring and APM tools selected for this research as well as knowledge on how to

integrate the selected APM tools with the optimization model.

3.2.1.3 Knowledge on Resiliency Evaluation and Chaos Engineering

For the resiliency evaluation system to be developed, a thorough knowledge of “Chaos

Engineering” and knowledge related Chaos Engineering tools are required.

Furthermore, members should have sufficient knowledge of configuring and

integrating the selected Chaos Engineering tool with the optimization model.

12

3.2.1.4 Machine Learning Knowledge

In order to develop the proposed optimization model, all members are required to have

quite basic knowledge of machine learning basics as well as time series analysis.

Members should be aware of the time series prediction models as well as knowledge

on how to integrate the relevant models with machine learning and develop basic

algorithms. Furthermore, members should also have a basic understanding of the

Python programming language and related Python machine learning and time series

libraries.

3.2.1.5 Optimization algorithm.

Optimization algorithms use a wide variety of fields.it is an applied mathematics

field that part of data science. These optimization algorithms reach the optimal

solution By maximizing or minimizing variables. Different type of optimal algorithm

has different accuracy level and performance level. It is very important to select a

better algorithm for producing a better result.

3.2.1.6 cloud network and Kubernetes network.

Cloud network consist of WAN, MAN, LAN and virtual networks. Also Kubernetes

network includes node network and pod network. We have awareness about how to

communicates between microservice using previous mention networks.

13

3.2.2 Schedule Feasibility

The proposed project should be able to be implemented within the scheduled time

period of about five months, with about two months allocated for research, requirement

gathering, and analysis. Finally, the proposed project should be completed within the

end of 7 months, including sufficient testing.

3.2.3 Economic Feasibility

The cost of the proposed project should be as minimal as possible in order for it to be

included and accepted in the existing APM tool market in Kubernetes. This is mainly

due to the fact that most APM tools and solutions offered currently with respect to

Kubernetes are often opensource.

3.3 Requirement Analysis

During the requirement analysis phase, key information obtained during the

requirement gathering phase is analyzed. Analyzing the gathered information will

prove to be of most importance to the research process, since key information

regarding the potential challenges that may be faced, the potential complexity of tasks

involved, as well as other key information regarding the tools used by other research

teams will be easily identifiable.

Also, since the research carried out a software-based approach, by performing

requirement analysis, key information regarding the schedule, technical and economic

feasibility was realized and helped in aligning research goals such that the research

carried out does not exceed the technical skills of the research members while

maintaining the expected deadlines.

14

In the research paper analysis, the primary focus will be given to the analysis of the

methodology and tools used, as well as the outcomes of the research conducted. This

helps in improving the decision-making process in the current research by providing

credible evidence that will help in deciding upon the direction in which the current

research should progress by highlighting the research gaps.

Furthermore, analyzing the online resources regarding the available tools will help in

the identification of the existing tools that posses’ similar features to what the current

research aims at implementing and help in identifying the research gap by comparing

the existing feature with those that are proposed. Also, by analyzing tools that could

prove to be of use in the implementation of the current research, a clear idea regarding

the features they possess, and how they could be integrated into the current research

could be identified.

3.4 System Analysis

3.4.1 Software Solution

3.4.1.1 Input Metrics

There are several input metrics go through optimal deployment algorithm. Such as

• Predicted Dependency Map

This is the predicted dependency map that describes the average number of requests between

pairs of microservices in a certain time period.

• Node Latency Map

This describe network latency between nodes.

• Resiliency Level

This describe resiliency level of each node.

• System Runtime Information

i. Node resource power

ii. Microservice resource consumption

15

3.4.1.3 Analysis and Rearrangement

The first system obtains pairs of microservice dependency levels from the predicted

dependency map. these pairs are rearranged according to strong dependency.as an example,

most communicated a couple of microservices have the strongest dependency.

After that, analyze the resiliency level of microservices. Using a resiliency methods system

can identify the most critical microservices in the System. This metric can be used to increase

availability.

Next, calculate the quickest path between node by using node latency map. near located

nodes have low network latency than far located nodes. If most communicate couple of

microservice located in near nodes, whole application makes more score

These metrics are rearranged according to the importance level. Most important metrics

more effect on the fitness score function.

3.4.1.4 Genetic Algorithm for Optimal Deployment

After metrics gathering and rearrangement, all metrics go through the Genetic algorithm.

Algorithm will be implemented by using the below activities.

• population: we consider one deployment map as one chromosome. Also, the existing

deployed map part of the population. Therefore, algorithms always guarantee to

generate a better solution than the existing deployment map.

• crossover constraints: all the microservice must be deployed on the cluster. In each

node, microservices total resource consumptions must be lower than node resource

power.

• selection: more performance deployment maps are selected for the next generation.

the fitness function is mainly based on performance and availability for microservice

deployment.

• fitness function: If a strong dependent pair of microservices deployed in the near

node or same node, it is the point that makes more score. Also, there is a scoring

method for availability by counting multiple instances for a microservice.

16

3.5 System Development and Implementation

The implementation process of the proposed model will be performed as per Figure

3.2 given below.

Figure 3.2: Proposed Methodology

All the obtained metrics go through the optimization algorithm. Whole system will be

planned to run on master node as a single application. Admin can access to the dashboard

using particular port of the master node.

O
u
tp

u
t to

 d
ash

b
o
ard

C

o
n
fi

g
u
re

 c
lu

st
er

 b
as

ed
 o

n

g
en

er
at

ed
 d

ep
lo

y
m

en
t

st
ra

te
g
y

Output to dashboard

17

3.5.1 Building the Final Optimization Algorithm

The genetic algorithm does not guarantee the generation of the best plan, but it always

generates a better plan. After selecting the better strategy plan, the system can perform

the automated deployment. To obtain node resource power and microservice resource

consumption, Istio will be used. Python will be used for implementing the algorithm

whereas libraries such as NetworkX be used for dealing with the node latency map.

Python GA library will be used to perform the genetic algorithm part.

Tools

• Istio

Programming Languages

• Python

Key Python libraries expected to be used

• NetworkX

• Numpy

• GA

18

3.6 Project Requirements

3.6.1 Functional Requirements

The functional requirements for the proposed model are as follows:

• Users should be able to view the optimal deployment strategy for a given

cluster.

• Users should be able to view possible deployment suggestions in order to

optimize the deployment.

• The system should analyze the resiliency of the identified microservices in the

cluster.

• The system should be response to the Horizonal-scaling and Vertical-scaling.

• The optimal deployment strategy for a particular deployment should be

determined using the predicted load, evaluated centrality measures and

resiliency evaluation.

3.6.2 Non-Functional Requirements

The following are the non-functional requirements that are primarily focused during

the development of the proposed model.

• Usability

• Reliability

• Availability

• Interoperability

• Performance

19

3.7 Testing

The testing phase is a key phase in the development process of this research, and it is

expected to be conducted throughout the implementation process of this research

project. Initial testing will be performed on a component level basis in which each

component will be tested individually, and once a specific component has been

developed, the testing process will begin. During component-level testing, key

features and functions developed will be evaluated to ensure they are functioning as

required Once all components have been completely developed, integration testing

will be performed, and the final developed model will be evaluated to ensure the

overall performance is improved in the microservice cluster through the use of the

proposed governance model. Here, key factors such as latency and its related

measures will be used to evaluate the performance of the proposed governance

model.

For this research, a test-bed of consisting of about 50 microservices is expected to be

deployed in a Kubernetes cluster. Furthermore, a load-generation tool is expected to

be used in order to generate sufficient metrics in order to develop the co-dependency

network. These capture metrics will then be used in the load prediction and resiliency

evaluation components for further analysis.

Many constraints are using to develop this optimal deployment algorithm. Before

practical deployment tests, test the theoretical constraint are worked correctly or not.

Especially in the fitness function, we should verify and validate fitness function

scoring methods.

As an example, if the fitness function calculate score in wrong way, whole application

is fails. So that go to the practical deployment testing is unnecessary thing, if fail the

theoretical testing.

20

We hope to create a formula to evaluate the overall performance of the microservice

model. This is the proposed formula:

Figure 3.7.1 performance formula

This formula calculates the average response time per request. It means that it

calculates the Sum of response time of all the request divide by sum of all request in

certain time period.

l=fair of microservice link identifier.

n=number of microservice.

AVG.Res.Time=specific link average response time.

N=number of requests for specific link.

We compare the performance of optimal deployment and performance of previous

deployment version. This result will be guarantee that research successful or failure.

21

3.8 Time Line

The proposed timeline for the project is as follows.

Figure 3.3: Gantt Chart

22

4.0 Personnel and Facilities

Name Key Tasks

L.S Jayasinghe • Retrieval of the analyzed outputs from the

load prediction, dependency analysis map,

as well as resiliency evaluation process.

• Formatting and data manipulation of the

data received from the above-mentioned

output processes, in order to be fed as

inputs to the optimization algorithm.

• Development of final optimization

algorithm making use of Machine

Learning, which takes in inputs from the

load prediction, dependency analysis map,

and resiliency evaluation process, and

proposes the suggested optimal

deployment strategy.

1. crossover constraints creation.

2. fitness function creation.

• Integrate with the UI dashboard in order to

display the optimal deployment strategy to

the user.

1. Optimal deployment map will be showed.

2. Suggestion list will be showed.

23

5.0 Commercialization

The commercialization of this research project is mainly considered through the

development of a tool through the use of the proposed model. The developed tool will

be developed as a Business Intelligence Dashboard which makes use of the proposed

model to provide developers and system administrators an easy and efficient way in

which to optimize their Kubernetes deployment by aiming to provide the following

benefits.

• Visualize the level of inter-dependency among deployed microservices.

• Receive suggestions in potential ways to optimize the performance and

configure current deployments and automatically perform deployments based

on the suggestions.

• Visualize comparison of previous deployed microservice map vs currently

generated map.

The developed Business Intelligence Dashboard will allow users to access all the

above-mentioned features and provide a holistic view of their deployments. Hence,

this tool will be mainly targeted to be marketed as an APM tool for Kubernetes

deployments for system administrators and developers. Due to the wide variety of

APM tools currently available in the market which are mostly free and opensource, the

initial plan is to develop this dashboard into an opensource tool in order to enter the

• Evaluate the effect of the developed

optimization algorithm with respect to the

performance of the microservice cluster.

1. Theoretically evaluate the model.

2. Practically evaluate the model.

Table 4.1: Personnel and Resources

24

current market space effectively. However, throughout the years, a freemium based

marketing strategy will be adopted with the inclusion of additional features.

6.0 Budget

The main aspect of this research is primarily focused on the development of an

optimization model that aids in the deployment of microservices through Kubernetes,

and hence it is primarily a software-based solution with no inclusion of external

hardware.

However, there will be some costs expected to be incurred, as given in the table below.

Internet use and web hosting 6000 LKR

Publication costs 2000 LKR

Stationary 2000 LKR

TOTAL 10000 LKR

Table 6.1: Budget

Note: Azure Student subscription with $100 of free credit for 12 months will be used

for this project. Therefore, resource creation for the VMs needed for testing and

creation of the Kubernetes cluster to be used for implementation purposes could be

obtained without any additional cost and hence is not included in the budget.

25

7.0 Summary

The primary objective of this proposed research is to develop a model that aims to

improve microservice governance in Kubernetes deployments through a network

science-based approach.

The model is developed primarily through a microservice dependency map based on

metric analysis, and performing load prediction, and resiliency evaluation on the

microservices identified using the dependency map. Finally, the outputs of these

components will be fed into an optimization algorithm and display an optimal

deployment strategy to the user.

The proposed model will ultimately be able to provide developers and system

administrators an overview of their current deployment configurations with respect to

performance and aid in governing their microservice deployments such that the

optimal performance is achieved.

26

8.0 References

 [1]"docker history", Docker Documentation, 2020. [Online]. Available:

https://docs.docker.com/engine/reference/commandline/history. [Accessed: 24-

Feb- 2020].

[2]"How Netflix works: the (hugely simplified) complex stuff that happens every time

you hit Play", Medium, 2020. [Online]. Available:

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-

simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b.

[Accessed: 24- Feb- 2020].

[3]"8 Container Orchestration Tools to Know - Linux.com", Linux.com, 2020.

[Online]. Available: https://www.linux.com/news/8-open-source-container-

orchestration-tools-know/. [Accessed: 25- Feb- 2020].

[4]Vaadin.com, 2020. [Online]. Available: https://vaadin.com/blog/microservices-

high-availability. [Accessed: 25- Feb- 2020].

[5]"Evaluating Critical Performance Needs for Microservices and Cloud-Native

Applications", Medium, 2020. [Online]. Available:

https://medium.com/netifi/evaluating-critical-performance-needs-for-

microservices-and-cloud-native-applications-7675c50a8460. [Accessed: 25-

Feb- 2020].

[6]"Test Azure virtual machine network latency in an Azure virtual

network", Docs.microsoft.com, 2020. [Online]. Available:

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-test-

latency. [Accessed: 25- Feb- 2020].

[7]"Azure network round trip latency statistics", Docs.microsoft.com, 2020. [Online].

Available: https://docs.microsoft.com/en-us/azure/networking/azure-network-

latency. [Accessed: 25- Feb- 2020].

[8]"Co-locate Windows Azure VMs - Azure Windows Virtual

Machines", Docs.microsoft.com, 2020. [Online]. Available:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/co-location.

[Accessed: 25- Feb- 2020].

[9]"Travelling salesman problem", En.wikipedia.org, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Travelling_salesman_problem. [Accessed: 25- Feb-

2020].

[10]"Mathematical optimization", En.wikipedia.org, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Mathematical_optimization. [Accessed: 25- Feb-

2020].

[11]"Genetic algorithm", En.wikipedia.org, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Genetic_algorithm. [Accessed: 25- Feb- 2020].

27

[12]"Genetic Algorithms - Introduction - Tutorialspoint", Tutorialspoint.com, 2020.

[Online]. Available:

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduc

tion.htm. [Accessed: 25- Feb- 2020].

[13]M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi and G. Zavattaro, "Optimal and

Automated Deployment for Microservices", Fundamental Approaches to

Software Engineering, pp. 351-368, 2019. Available: 10.1007/978-3-030-16722-

6_21 [Accessed 25 February 2020].

[14]"Kubernetes Scheduler", Kubernetes.io, 2020. [Online]. Available:

https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/. [Accessed: 25-

Feb- 2020].

9.0 Appendices

28

http://arduino.cc/en/uploads/Main/ArduinoUnoBack.jpg

