

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

Saranga S.A.G

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

B.Sc. (Hons) in Information Technology Specializing in

Software Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

i

Declaration

ii

Abstract

With the growth of the information technology industry and the use cases of software

solutions, the complexity of the implementations increased over time. After a series of

improving Software architectures, Microservices have become one of the most popular

development architectures for many software applications developed today. The main reason

for this popularity is due to its efficient and effective way to decompose a large and complex

system into their functional components and implement a loosely coupled, self-contained

system that supports scalability and performance. Even though microservice architecture has

its many benefits, management of hundreds of microservices which deployed in a various

physical location is challenging.

Kubernetes comes to play to solve the challenges of maintaining a sizeable microservice

structure and make life a little easier for a system engineer. Therefore, many organizations

deploy their application embracing microservice architecture and make use of platforms such

as Kubernetes to ensure the successful deployment of their application in production.

Even with the use of microservice orchestration tools such as Kubernetes, monitoring the

whole application to identify the performance bottlenecks and risks is challenging. Monitoring

the whole application is vital when it comes to a larger organization with a vast number of

interconnected, highly dependent microservices.

This research carried out intentions to develop a model to find out the dependency level

between each microservices to compose a better deployment strategy with the support for

auto-deployment. Furthermore, provide a dynamic monitoring solution with a Business

Intelligence dashboard.

Keywords: Service Mesh, Dependency, Container, Docker, Kubernetes, Machine Learning,

Microservices, Time Series, Business Intelligence

iii

Table of Contents

Declaration... i

Abstract ..ii

Table of Contents ... iii

List of Figures .. v

List of Tables .. vi

List of Abbreviations .. vii

1.0 INTRODUCTION .. 1

1.1 Background and Literature .. 4

1.2 Research Gap ... 7

1.3 Research Problem .. 9

2.0 OBJECTIVES .. 10

2.1 Main Objective ... 10

2.2 Specific Objectives ... 10

3.0 METHODOLOGY .. 11

3.1 Requirement Gathering ... 11

3.1.1 Past Research Analysis ... 11

3.1.2 Identifying Existing Systems .. 11

3.2 Feasibility Study ... 12

3.2.1 Technical Feasibility ... 12

3.2.2 Schedule Feasibility .. 13

3.2.3 Economic Feasibility ... 13

3.3 System Analysis .. 14

3.3.1 Software Solution .. 14

3.4 System Development and Implementation .. 15

3.4.1 Building the Dependency Network .. 17

3.5 Project Requirements .. 22

3.6 Testing ... 23

3.7 Time Line .. 24

4.0 PERSONNEL AND FACILITIES ... 25

5.0 COMMERCIALIZATION ... 26

iv

6.0 BUDGET ... 27

7.0 SUMMARY .. 28

References ... 29

v

List of Figures

Figure 1.0.0 Comparison Between Virtual machines and Containers 2

Figure 1.1.1 Monolothic Architecture .. 4

Figure 1.1.2 Microservice Architecture ... 5

Figure 1.1.3 Microservice Technologies Timeline. ... 6

Figure 1.2.1 Current Automated Process of Kubernetes.. 8

Figure 3.3.1 System Overview Diagram ... 14

Figure 3.4.1 Proposed Methodology ... 15

Figure 3.4.2 Service Mesh Architecture ... 17

Figure 3.4.3 Istio Architecture For A Single Cluster .. 18

Figure 3.4.4 Istio Architecture For A Multi Cluster .. 18

Figure 3.4.5 Promethus Architecture ... 19

Figure 3.4.6 Sample Grafana Dashboard ... 20

Figure 3.4.7 Sample Kiali Dashboard .. 20

Figure 3.4.8 Sample Jaeger Dashboard .. 21

Figure 3.7.1 Gantt Chart... 24

vi

List of Tables

Table 4.3.1 Tools and Languages to be Used in the Implementation 21

Table 4.0.1 Personnel and Resources ... 25

Table 6.0.1 Budget ... 27

vii

List of Abbreviations

AKS

Azure Kubernetes Services

API Application Program Interface

APM Application Performance Monitoring

AWS Amazon Web Service

CD Continuous Deployment

CI Continuous Integration

CLI Command Line Interface

DB Database

DEVOP Development and Operations

HTTP Hypertext Transfer Protocol

IT Information Technology

OS Operating System

REST Representational State Transfer

SOA Service-Oriented Architecture

TLS Transport Layer Security

TOSCA Topology and Orchestration Specification for Cloud

Applications

VM Virtual Machine

1

1.0 INTRODUCTION

Microservices have grown to one of the most popular development structures for many

software applications developed today [1] , mainly since microservices provide an

effective way to develop a software application as a set of interconnected modular

services that can be independently deployed and scaled. Prime companies such as

Netflix, Uber, and Amazon moved from their traditional architectures to embrace the

microservice architecture because of simplicity, support, and, most importantly,

continuous deployment and integration.

With the growth of the industry and the usage of information technology, even

microservices became too complicated. To solve this complexity of microservices, the

technology "Containerization" [2] came in to play. The idea of containers was started

way back in 1979 with UNIX Chroot. [3] It is a UNIX operating-system system call

for transforming the root directory of a process, and it is children to a new position in

the filesystem, which is only visible to a given process.

Most of the time, containers compared to virtual machines since they both allow the

software to execute in a contained environment. However, they are different in the

structure and the process of execution.

VMs are an abstraction of the hardware layer, meaning that each VM simulates a

physical machine that can run the software. VM technology can use one physical

server to run the equivalent of many servers, each of which is called a VM. So, while

multiple VMs run on one physical machine, each VM has its copy of an Operating

System, applications and their related files, libraries, and dependencies.

Containers are an abstraction of the application layer, meaning that each container

simulates a different software application. Though each container runs isolated

processes, multiple containers share a universal Operating System.

2

With the popularity of containerization, there are several platforms to provide the

services of containerization, including Docker, VirtualBox, Vagrant, and Wox [4]. All

these platforms have their ups and downs, but docker holds the position of the leading

platform when it comes to the containerization.

There are five main advantages of docker, which are speed, portability, scalability,

rapid delivery, and density [5]. Furthermore, since all required dependencies, libraries,

and all other components needed for the microservice packaged up in the container

itself, the software is isolated from its environment, ensuring the performance and the

functionality of the software remain the same regardless of the underlying platform

[6].

Nevertheless, with the use of docker containers in production, practical problems

become visible such as which container runs on which node, how to improve the

performances, how to add more replications to add redundancy, and how to

communicate with each node. Kubernetes designed to overcome all the above-

mentioned practical problems and many more [7].

Figure 1.0.0: Comparison between Virtual Machines and Containers

3

Kubernetes [8], which introduced in 2014, is a portable, extensible, open-source

platform for managing containerized workloads and services that facilitates both

declarative configuration and automation. It has a vast, rapidly growing ecosystem.

Kubernetes services, support, and tools are widely available [9]. Integrating

Kubernetes into an application's deployment strategy, therefore, enables an

organization to deploy quickly, manage, and handle an application, keeping the

inherent benefits of container-based deployments while ensuring service availability.

The existence of these unique characteristics in Kubernetes has therefore resulted in

its widespread use in microservice deployments and increased popularity.

However, even though the use of deployment tools like Kubernetes, there are still some

issues that need to address. Kubernetes can be an overkill for simple applications.

Furthermore, even though Kubernetes introduced to simplify sophisticated

containerizations, the Kubernetes itself can be complicated for developers not familiar

with the infrastructure and cause low productivity.

The primary issue being that deployment tools like Kubernetes perform deployments

without really taking into consideration about the interdependency among deployed

microservices. Although this modular structure is what makes the microservices

scalable, the downside is that there is no guarantee that interconnected services are

deployed in the same node or nearby nodes unless configured otherwise. If those

services deployed far away each, then issues such as network latency could be a

problem.

This research aims to provide a solution to this significant problem by taking the initial

step by aiming to develop a model that takes into consideration the overall dependency

between each microservices. The expected output model will aid in reducing the

network latency of the microservice system, and the users of the model will be able to

get an idea about the overall dependency structure of the application in a network as a

whole.

4

1.1 Background and Literature

Dr. Peter Rogers came up with the wording of "Micro web services" in 2005 during

an initial conference of cloud computing. The term "Microservices" has revealed at an

event for software architectures where the term used to define a new software

architecture that many computer scientists were experimenting at that time [10].

Amazon, Uber, and Netflix were among the first few tech giants to embrace this new

architecture in their businesses [11].

The concept of microservices came to the world to solve the challenges of the vastly

growing software and systems, which were getting more and more complex rapidly

[10]. The idea was to divide the complex applications to more manageable smaller

applications and allow them to communicate with each other using an implementation

language-independent interface.

Before the idea of microservices, which displayed in figure 1.1.2, almost all the

companies were using monolithic architecture, as depicts in figure 1.1.1, which was

running into problems in areas of managing, scaling, maintaining, and automation.

 Figure 1.1.1: Monolithic Architecture

5

Another key difference when between microservice and monolith architecture is when

it comes to how they governed. This term is known as "Microservices Governance"

concerning a microservice architecture, and it can define as a methodology or approach

that establishes policies, standards, and best practices for the adoption of microservices

to enable an enterprise agile IT environment [10]. Governance in monoliths is

centralized, and decisions made "top-down" [10], whereas governance in

microservices embraces a decentralized governance approach which, enables

microservices to make use of a polyglot model technology stack in the development

of applications.

However, the decentralized approach used in the governance of microservices should

take more steps to ensure effective governance is maintained since typical applications

require interconnections between a vast number of microservices where business

process workflows introduced continuously. Therefore, in order to ensure an effective

microservice governance is in place, organizations currently make use of a variety of

tools that facilitate tasks such as monitoring, autoscaling, configuration management,

fault tolerance, and many more. Over the years, with the increased popularity of

Figure 1.1.2: Microservice Architecture

6

microservice architecture, new tools and technologies were introduced to support

microservice-based technologies, as shown in Figure 1.1.3 to support improved

scalability, monitoring, and deployments.

Even though Kubernetes and all other tools resolve various problems and improve the

functionality of the microservices, there are still some problems and performance

bottlenecks either those tools cannot solve, or the tools introduce. Past researches [12,

9, 13] describes the drawbacks and cons of Kubernetes when it comes to containerized

microservices.

The past research [14] shows the importance of having a monitoring solution to

monitor the workload and the performance of the cluster. Istio came into the play to

solve this common problem. At a high level, Istio helps reduce the complexity of these

deployments and eases the strain on the development teams. It is an entirely open-

source service mesh that layers transparently onto existing distributed applications. It

is also a platform, including APIs that let it integrate into any logging platform, or

telemetry or policy system. Istio's diverse feature set lets the development team

Figure 1.1.3: Microservice technologies timeline [30].

[8]

7

successfully, and efficiently, run a distributed microservice architecture, and provides

a uniform way to secure, connect, and monitor microservices [15].

There are lots of previous researches about building a service mesh and developing

monitoring solutions. Nevertheless, there were no past publications have been done

considering the quantified dependency level between microservices. It is quite clear

that taking the dependency level into account will help when it comes to building a

better monitoring solution.

1.2 Research Gap

The primary research gap that this research aims at fulfilling is the gap that exists in

current methodologies when considering the dependency level between microservices,

particularly concerning Kubernetes. A thorough analysis of published research papers

throughout the years has managed to highlight very low of the issues that are present

in current microservice deployment methodologies and thereby enabled in the

identification of the research gap, as mentioned in the previous statement.

The initial inspiration for the identification of this research problem and the objectives

of this research can found in [16]. This publication clearly describes some of the key

challenges faced in the deployment of microservices and the need for Application

Performances Monitoring tools, especially those deployed in containers to include

additional measures to monitor microservices such that they could use as input for

resilience mechanisms and creation of auto-scaling policies.

Even though there are numerous researches about Kubernetes and service mesh, there

were no publications considering the dependency between microservices as a whole.

The available publications go on to describing the auto-deployment facilities of

Kubernetes [17]; however, they do not describe how that can affect the network latency

between microservice are deployed automatically in the available nodes.

8

However, when it comes to the deployment of the proposed optimal deployment

strategy, generated at the end of the proposed solution, support for auto-deployment is

crucial. Currently, the developers use the Yaml language [18] to write configurations

as code to do the necessary deployments. Nevertheless, when it comes to handling the

deployments of a vast number of microservices, it can be a headache for the

development team.

According to publication [7, 8, 19], there is automated deployment support in

Kubernetes, as depicted in figure 1.2.1. However, still, there is no consideration given

towards the dependency level, resilience analysis, and load prediction, which are the

key pillars of this proposed research.

Figure 1.2.1: Current automated process of Kubernetes

9

1.3 Research Problem

Even though Kubernetes is quite successful and widely used nowadays, it is not

without its unique challenges, which are especially true concerning some of the current

processes in the governance of microservices through Kubernetes, particularly

considering processes involving in monitoring, resource utilization, and performance

optimization.

Some of the known problems to Kubernetes [20]:

• Complexity

▪ Kubernetes itself is quite complex to install, configure and manage

• Unknowingly over or under-allocating the available resources with negative

results

▪ Pods might not start at all

▪ Pods might crash at really bad times under high workload

• Using/configuring external load balancers to access the applications via the

internet – yet another technology to learn and manage

• Creating health checks for every component

• Integration into the build pipelines

• Learning YAML

• Monitoring

The proposed research aims to address all the problems mentioned above by

developing a model to consider the dependency levels between microservices to design

a more improved deployment strategy and support automated deployment and provide

a monitoring solution to get a better idea about the whole microservice architecture to

get business-wise decisions.

10

2.0 OBJECTIVES

2.1 Main Objective

The main objective of this research to generate a dependency network based on the

metrics gathered from the Kubernetes cluster to provide a better understanding of the

whole microservice architecture. This aids in making decisions regarding the

deployment strategy of the microservice architecture.

2.2 Specific Objectives

The following are the sub-objectives of conducting this research.

• To configure the Kubernetes cluster to get the metrics of the microservices and

nodes

• To analyze the network and calculate the network traffic

• To support the auto deployment by generating Yaml files and applying them

to the cluster.

• To provide a monitoring solution with the real-time metrics

11

3.0 METHODOLOGY

3.1 Requirement Gathering

Requirement gathering was through performing an extensive analysis of past research

conducted throughout recent years, identification and analysis of the existing systems,

as well as reading through a variety of online resources. Kubernetes' official

documentation and the Istio documentation were the main resources when gathering

the requirements.

3.1.1 Past Research Analysis

When it comes to Past Research Analysis, there are quite a lot of research papers and

publications under the topic of Service mesh. However, there was a smaller number

of publications considering the dependency levels between microservices. Key topics

of interest included Service Mesh, Load balancing, load prediction, and network

monitoring.

During the past research analysis, the main focus was to identify the methodologies

and the tools used to build the existing tools and platforms. Moreover, it helped to

identify the problems that the past researchers faced.

3.1.2 Identifying Existing Systems

There are several existing APM tools to monitor applications running on top of

Kubernetes [21, 22]. However, those APMs do not provide any suggestions or support

for an optimal deployment strategy. Moreover, most of the APMs are running

independently, and it is harder to monitor every monitoring solution. There is a void

in the current market for a monitoring solution to combine existing ones to provide a

complete, more detailed platform and suggestions for a better deployment strategy and

support for auto-deployment.

12

3.2 Feasibility Study

3.2.1 Technical Feasibility

3.2.1.1 Knowledge on Kubernetes

In order to develop the proposed optimization model, all members should have basic

knowledge of Kubernetes and its relevant components. Members should be able to

perform basic configuration and should have sufficient knowledge and practical

experience on how to deploy microservices through Kubernetes.

3.2.1.2 Knowledge on APM tools

In order to develop the proposed optimization model, all members should have quite

an in-depth understanding of the existing APM tools and the features and drawbacks

present. The members should also have sufficient knowledge of configuring and APM

tools selected for this research as well as knowledge on how to integrate the selected

APM tools with the optimization model.

3.2.1.3 Machine Learning Knowledge

In order to develop the proposed optimization model, all members should have quite

basic knowledge of machine learning basics as well as time series analysis. Members

should be aware of the time series prediction models as well as knowledge on how to

integrate the relevant models with machine learning and develop basic algorithms.

Furthermore, members should also have a basic understanding of the Python

programming language and related python machine learning and time series libraries.

13

3.2.1.4 Knowledge in Microservices

The topics like containerization, dockers, Kubernetes, and service mesh are all based

on microservices. Therefore, having a good idea and understanding of the concepts

and the techniques of the microservice architecture is highly essential.

3.2.1.5 Knowledge in Yaml

When it comes to auto-deployment in Kubernetes, the configuration language, Yaml

[18], plays a vital role. Since one of the outcomes of the proposed research is to come

up with an auto-deployment solution, knowing Yaml will be an added advantage.

3.2.2 Schedule Feasibility

As the output of this proposed research will act as an input for the researches in other

team members, the proposed solution should implement within at least two months.

The auto-deployment part of the proposed solution can implement at the final stage

of the research.

3.2.3 Economic Feasibility

The cost of the proposed project should be as minimal as possible in order for it to be

included and accepted in the existing APM tool market in Kubernetes because most

APM tools and solutions offered currently concerning Kubernetes are often

opensource.

14

3.3 System Analysis

3.3.1 Software Solution

The overview of the proposed system is as follows. Its structure mainly composed of

the following components.

• Create a Kubernetes cluster on Azure AKS [23]

• Configure Istio [15]

• Track and Monitor Network traffic and dependency

• Build the dependency network

• Support Auto deployment

 Figure 3.3.1: System Overview Diagram

15

3.3.1.1 Dependency Network

The microservice dependency network is a map that depicts the architecture of the

microservice cluster based on the level of dependency among microservices. This

model will use a series of tools to capture the network requests and responses and

reverse engineer the metrics collected to build a dependency network based on the

timestamps.

3.4 System Development and Implementation

The implementation process of the proposed model will perform as per Figure 3.2

given below.

Figure 3.4.1: Proposed Methodology

O
u
tp

u
t to

 d
ash

b
o
ard

C
o
n
fi

g
u
re

 c
lu

st
er

 b
as

ed
 o

n

g
en

er
at

ed
 d

ep
lo

y
m

en
t

st
ra

te
g
y

Output to dashboard

16

The steps planned to follow in order to reach the proposed solution are as given below.

1. Create a Kubernets cluster in Azure AKS

2. Configure Istio and deploy it to the created AKS cluster.

3. Create a proxy on top of each node to capture the network requests and

responces in and out.

4. Comeup with an algorithm, to backtrack the captured metrics with the

timestamps to quantify the dependency levels between microservices of the

cluster.

5. Create and optimize a dataset to use in the load prediction and resiliency

analysis part of the proposed research.

6. Visualize the generated dependency network in the format of a chart and

display it in the business intelligence dashboard.

17

3.4.1 Building the Dependency Network

The word Service Mesh is a frequently seen word when talking about the microservice

architectures. A service mesh is a configurable, low-latency infrastructure layer

designed to handle a high volume of network-based interprocess communication

among application infrastructure services using application programming interfaces

(APIs) [24]. A service mesh ensures that communication among containerized and

often ephemeral application infrastructure services is fast, reliable, and secure. The

mesh provides critical capabilities, including service discovery, load balancing,

encryption, observability, traceability, authentication and authorization, and support

for the circuit breaker pattern.

The service mesh is usually executed by providing a proxy instance, called a sidecar,

for each service instance. Sidecars handle interservice communications, monitoring,

and security-related concerns – indeed, anything that can be abstracted away from

individual services. This way, developers can handle development, support, and

maintenance for the application code in the services; operations teams can maintain

the service mesh and run the app [14]. Istio, backed by Google, IBM, and Lyft, is

currently the best-known service mesh architecture. Kubernetes, which was initially

designed by Google, is currently the only container orchestration framework supported

by Istio.

Figure 3.4.2: Service mesh architecture

18

Istio [15] , make it easy to convert a microservice application to a service mesh

enabling load balancing, service authentication, routing, monitoring, and many more.

There are several core features bundled with Istio,

• Traffic Management

• Security

• Policies

• Observability

In the proposed research, the feature observability will use heavily.

Figure 3.4.3: Istio Architecture for a single cluster

Figure 3.4.4: Istio Architecture for a multi cluster

19

Configuration of Istio with the Kubernetes cluster exposes a set of dashboards to the

user allowing the user to visualize a set of metrics of the nodes and pods inside the

Kubernetes cluster.

Prometheus [25]

Prometheus is an open-source system monitoring and alerting toolkit originally built

at SoundCloud. Many companies and organizations have adopted Prometheus, and the

project has a very active developer and user community. It is now a standalone open

source project and maintained independently of any company.

When it comes to recording any purely numeric time series, Prometheus works like a

charm. Prometheus is well known for its' reliability. It fits with monitoring dynamic

service-oriented architectures, as shown in figure 3.4.4.

Grafana [26]

Grafana is a dashboard that enables developers to query, visualize, and understand the

metrics of a configured Kubernetes cluster in the format of multiple configurable

charts, as depicts in figure 3.4.5. Grafana allows creating customized dashboards to

capture and monitor relevant values to a particular subject.

Figure 3.4.5: Promethus Architecture

20

Grafana is compatible with an array of data sources. In the case of this proposed

research, Prometheus mentioned above can act as a data source for the Grafana model.

Kiali

Kiali is an observability console for Istio with service mesh configuration capabilities

[27]. It helps developers to understand the structure of their service mesh by inferring

the topology, and also provides the health of the mesh. Kiali provides detailed metrics,

and a fundamental Grafana [26] integration is available for advanced queries.

Distributed tracing is provided by integrating Jaeger.

Figure 3.4.6: Sample Grafana Dashboard [31]

Figure 3.4.7: Sample Kiali Dashboard [27]

21

Jaeger

Jeager [28] is used heavily in production level microservice architectures to find the

network traces. It is an open-source system that can use for monitoring and

troubleshooting a microservice architecture, including distributed context propagation,

root cause analysis, service dependency analysis, and many more.

The plan is to get necessary details from the above mentioned dashboards and tools

using the APIs exposed from the Istio. In summary, the following tools and languages

and frameworks will use for the implementation of the proposed model.

Programming Language s Python

Java

JavaScript

Configuration Languages Yaml

Frameworks React JS

Node JS

SpringBoot

Tools Istio

Grafana

Kiali

Prometheus

Jaeger

Libraries NetworkX (Python)

Table 3.4.1: Tools and Languages to be used in implementation

Figure 3.4.8: Sample Jaeger Dashboard

22

3.5 Project Requirements

3.5.1 Functional Requirements

The functional requirements for the proposed model are as follows:

• Users should be able to view the whole microservice architecture in a

visualized format.

• Users should be able to view the dependency network with quantified

dependency levels.

• Users should be able to view the optimal deployment suggestions given by

the proposed model.

• Users should be able to generate Yaml files for the selected deployments

• Users should be able to apply the generated yaml configurations directly to

the cluster.

3.5.2 Non-Functional Requirements

The following are the non-functional requirements focused during the development

of the proposed model.

• Usability

• Reliability

• Availability

• Interoperability

• Performance

23

3.6 Testing

When it comes to testing the research outcome, it plays a crucial role in the success of

the research. In order to test the functionality of the proposed solution, the initial plan

is to create a sample set of microservices) and deploy those to the cluster, monitor

the dependency network manually.

However, in the final part of the research, the proposed plan is to deploy the output

solution to a production level cluster. Moreover, check if there is an actual

performance improvement, performing a comparison between the cluster before, after

with the proposed deployment stratergy.

Testing of the automated-deployment part will be done by applying the generated

configuration yaml files directly to the cluster and making sure the necessary

deployment changes have happened.

24

3.7 Time Line

The proposed timeline for the project is as follows.

Figure 3.7.1: Gantt Chart

25

4.0 PERSONNEL AND FACILITIES

Name Key Tasks

Saranga S.A. G • Setting up and configuring the initial

Kubernetes microservice cluster for metric

analysis.

• Setting up and configuring the relevant

tools such as Prometheus, Grafana, Kiali,

Jager, and Istio. in order to retrieve the

required metrics.

• Identify and retrieve the required metrics

from the various metrics analyzing tools

• Analyze the retrieve metrics such that it

will be useful to determine the

interdependencies between the deployed

microservices.

• Development of a solution to display the

interdependencies gathered using metrics

in order to display as a dependency

network.

• Performing configuration of the auto-

scaling of the cluster based on the load-

prediction algorithm

Table 4.0.1: Personnel and Resources

26

5.0 COMMERCIALIZATION

The commercialization of this research project will be through the development of a

tool using the proposed model. The developed tool will make use of the proposed

model to provide developers and system administrators an easy and efficient way in

which to optimize their Kubernetes deployment by aiming to provide the following

benefits.

• Visualize the level of inter-dependency among deployed microservices

• Receive suggestions in potential ways to optimize the performance and

configure current deployments and automatically perform deployments based

on the suggestions.

• Provide an overview of the resiliency of the deployed microservices

• Automatically configure and auto-scale Kubernetes autoscaling tools based on

predicted load and centrality measures.

• A Business Intelligence Dashboard allows users to access all the features

mentioned above and provide a holistic view of the deployment.

This tool targeted to market as an APM tool for Kubernetes deployments, and due to

the wide variety of APM tools currently available which are mostly free and

opensource currently available in the market, the initial plan is to develop the tool into

an opensource tool in order to enter the current market space effectively.

However, throughout the years, a freemium based strategy will be adopted with the

inclusion of additional features.

27

6.0 BUDGET

Since the outcome of the proposed model is a software-based solution, there are no

hardware components connected to the implementation. The primary source of the cost

will be the subscription fees to the cloud provider for the computing power of the

virtual machines.

However, there will be some other costs expected to as given in the table below.

Internet use and web hosting 2000 LKR

Publication costs 2000 LKR

Stationary 1000 LKR

TOTAL 5000 LKR

Table 6.0.1: Budget

Note: Azure Student subscription with $100 of free credit for 12 months will use for

this project. Therefore, resource creation for the VMs needed for testing and creation

of the Kubernetes cluster, which will use for implementation purposes, could obtain

without any additional cost.

28

7.0 SUMMARY

The primary objective of this proposed research is to develop a model that aims to

improve microservice governance in Kubernetes deployments through a network

science-based approach.

This proposed research is focusing on generating a dependency network for the

whole microservice architecture. The outcome of this proposed solution enables the

user to have a clear and comprehensive idea about the deployed microservices, how

they communicate with each other, and what are the dependency levels between each

microservice communication.

In the second part, the proposed model focus on support automated deployment by

generating the necessary configuration in the Yaml format and apply them directly to

the Kubernetes cluster based on the user's requirements.

The proposed model will ultimately be able to provide developers and system

administrators an overview of their current deployment configurations for

performance and aid in governing their microservice deployments.

29

References

[1] S. Mandal, "Microservices — Why Is It Rapidly Gaining Popularity Now?," DZone,

[Online]. Available: https://dzone.com/articles/microservices-why-is-it-rapidly-

gaining-popularity. [Accessed 20 2 2020].

[2] S. Ray, "Hackernoon," 31 01 2019. [Online]. Available: https://hackernoon.com/what-

is-containerization-83ae53a709a6. [Accessed 22 2 2020].

[3] "ComputerHope," [Online]. Available:

https://www.computerhope.com/jargon/c/chroot.htm. [Accessed 18 02 2020].

[4] "Docker Alternatives," Educuba, [Online]. Available:

https://www.educba.com/docker-alternatives/. [Accessed 05 02 2020].

[5] B. B. Rad, H. J. Bhatti and M. Ahmadi, "Advantages of Docker Container," An

Introduction to Docker and Analysis of its Performance, vol. 16, pp. 230-231, 2017.

[6] J. Turnbull, The Docker Book: Containerization Is the New Virtualization, 2019.

[7] D. Vohra, "Why Kubernetes ?," in Kubernetes Microservices with Docker, pp. 41-42.

[8] "Kuberners," Kubernetes.io, [Online]. Available: https://kubernetes.io/. [Accessed 14

01 2020].

[9] The Kubernetes Authors, "What is Kuberners," Kuberners.io, [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed 14 01

2020].

[10] L. Mauersberger, "Microservices: What They Are and Why Use Them," leanix.com,

[Online]. Available: https://www.leanix.net/en/blog/a-brief-history-of-microservices.

[Accessed 20 02 2020].

[11] I. Nadareishvili, R. Mitra, M. McLarty and M. Amundsen, in Microservice Architecture:

Aligning Principles, Practices, and Culture, O'Reilly Media Inc., 2016, pp. 91-92.

[12] N. Dabare, "Predictive Based Multi factor Horizontal POD Auto Scalar for Kubernetes,"

p. 01, 2020.

[13] A. Modak, S. D. Chaudhary, P. S. Paygude and S. R. Ldate, "Techniques to Secure Data

on Cloud: Docker Swarm or Kubernetes?," IEEE, 2018.

[14] C. Fred Moyer, "Comprehensive Container-Based Service Monitoring with Kubernetes

and Istio".

30

[15] 2019 Istio Authors, "What is Istio?," Istio, [Online]. Available:

https://istio.io/docs/concepts/what-is-istio/. [Accessed 21 02 2020].

[16] W. Li, Y. Lemieux, J. Gao, Z. Zhao and Y. Han, "Service Mesh: Challenges, State of the

Art, and Future Research Opportunities," in 2019 IEEE International Conference on

Service-Oriented System Engineering (SOSE), San Francisco East Bay, CA, USA, USA,

2019.

[17] P. Bakker, "One year using Kubernetes in production: Lessons learned," TechBeacon,

[Online]. Available: https://techbeacon.com/devops/one-year-using-kubernetes-

production-lessons-learned.

[18] R. Gibb, "What is YAML?," StackPath, 17 7 2019. [Online]. Available:

https://blog.stackpath.com/yaml/. [Accessed 22 2 2020].

[19] "How to automate Kubernetes workflows," [Online]. Available:

https://buddy.works/guides/how-optimize-kubernetes-workflow. [Accessed 24 02

2020].

[20] J. Hirschaurer, "Problems solved and problems created by Kubernetes," Instana, 10 12

2018. [Online]. Available: https://www.instana.com/blog/problems-solved-and-

problems-created-by-kubernetes/. [Accessed 23 02 2020].

[21] A. Murty, "Kubernetes: How New Relic Sets You Up for Success," [Online]. Available:

https://blog.newrelic.com/engineering/monitoring-application-performance-in-

kubernetes/. [Accessed 18 02 2020].

[22] D. Berman, "Top 10 Open Source Monitoring Tools for Kubernetes," logz.io, 4 10

2019. [Online]. Available: https://logz.io/blog/open-source-monitoring-tools-for-

kubernetes/. [Accessed 12 02 2020].

[23] "Azure Kubernetes Service (AKS)," Microsoft Azure, [Online]. Available:

https://azure.microsoft.com/en-us/services/kubernetes-service/. [Accessed 24 02

2020].

[24] F. Smith and O. Garrett, "What Is a Service Mesh?," NGINX, 03 04 2018. [Online].

Available: https://www.nginx.com/blog/what-is-a-service-mesh/. [Accessed 12 02

2020].

[25] Prometheus Authors, "What is Prometheus," [Online]. Available:

https://prometheus.io/. [Accessed 21 02 2020].

[26] Grafaana Labs, "What is Grafana ?," [Online]. Available: https://grafana.com/.

[Accessed 22 02 2020].

31

[27] G. Chandra, "Istio Service Mesh Observability with Kiali," 29 7 2019. [Online].

Available: https://itnext.io/istio-service-mesh-observability-with-kiali-c2ded8a413c4.

[Accessed 22 02 2020].

[28] "Introduction to Jaeger," Jaeger, [Online]. Available:

https://www.jaegertracing.io/docs/1.6/. [Accessed 22 02 2020].

[29] "Microservices," [Online]. Available: https://en.wikipedia.org/wiki/Microservices.

[Accessed 21 02 2020].

[30] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis and S. Tilkov, "The Technological

Perspective," Microservices: The Journey So Far and Challenges Ahead, vol. 35, pp. 24

- 35, 04 05 2018.

[31] H. Omans, "Adding Consistency and Automation to Grafana," 25 07 2019. [Online].

Available: https://techblog.commercetools.com/adding-consistency-and-automation-

to-grafana-e99eb374fe40. [Accessed 22 02 2020].

32

