A NETWORK SCIENCE BASED APPROACH FOR OPTIMAL MICROSERVICE GOVERNANCE

M.V Lakshitha

IT17410250

B.Sc. (Hons) Degree in Information Technology
Specializing in Software Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology
Sri Lanka

September 2020
A NETWORK SCIENCE BASED APPROACH FOR AN OPTIMAL MICROSERVICE GOVERNANCE

M.V Lakshitha

IT17410250

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of
Science specializing in Software Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology
Sri Lanka

September 2020
1

[bookmark: _Toc51621960]Declaration

I declare that this is my own work and this proposal does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of our knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.
Also, I hereby grant to Sri Lanka Institute of Information Technology, the nonexclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	
	IT17410250
	M.V Lakshitha
	

The above candidates are carrying out research for the undergraduate Dissertation under my supervision.
	
Signature of the Supervisor: ……………………………………

Date: …………………………….

[bookmark: _Toc51621961]Abstract

Deploying microservices, Kubernetes acts as a management tool which assists to generate a better microservice governance. Advantages of using Kubernetes for microservice deployments are the ability to scale cluster resources based on traffic, improve productivity, security and more stables the application. This ability of Kubernetes enables developers and system administrators to reduce costs and make use of their deployed microservices more effectively and efficiently. However, even though the there are many researches and studies done on creating an optimal deployment plan for microservices, the factors they have considered are mainly the dependency network distribution, CPU usage, memory and network bandwidth. Future predictions by analyzing these metrics are not used to plan an optimal deployment plan and the resiliency of microservices have not been taken into consideration This research thereby aims to evaluate the resiliency of the microservices using chaos engineering so as to provide an input to come up with an optimal deployment plan for microservice governance.
Keywords: Kubernetes, Microservices, Resiliency, Chaos Engineering

[bookmark: _Toc51621962][bookmark: _Hlk49937871]Acknowledgment

[bookmark: _Hlk49937860]I would like to thank my supervisor, Dr. Dharshana Kasthurirathna, for the guidance and motivation provided to make this research a success. I would also like to thank the Department of Software Engineering of the Sri Lanka Institute of Information Technology as well as the CDAP lecturers and staff for providing the opportunity to conduct this research.

[bookmark: _Toc33550695][bookmark: _Toc51621963]Table of Contents

Declaration	i
Abstract	ii
Acknowledgment	iii
Table of Contents	iv
List of Figures	v
List of Tables	vi
List of Abbreviations	viii
1.0	INTRODUCTION	1
1.1 Background and Literature	8
1.2 Research Gap	15
2.0	RESEARCH PROBLEM	16
3.0	OBJECTIVES	18
3.1 Main Objective	18
3.2 Specific Objectives	18
4.0	METHODOLOGY	19
4.1 Requirement Gathering	19
4.1.1 Past Research Analysis	19
4.1.2 Identifying Existing Systems	19
4.2 Feasibility Study	20
4.2.1 Technical Feasibility	20
4.2.2 Schedule Feasibility	21
4.2.3 Economic Feasibility	22
4.3 Requirement Analysis	22
4.4 System Analysis	23
4.4.1 Software Solution	23
4.4.2 Configuring Chaos toolkit	24
4.5 System Development and Implementation	24
4.5.1 Installing plugins	25
4.6	Project Requirements	29
4.6.1 Functional requirements	29
4.6.2 Non-Functional Requirements	29
4.7 Commercialization	30
5	RESULTS AND DISCUSSION	31
5.1 Testing and Results	31
5.1.1 Configuring Chaos toolkit	31
5.3 Research Findings and Discussion	35
6.0 CONCLUSION	36
References	37

[bookmark: _Toc51621964]List of Figures

Figure 1.1 Monolothic Architecture	1
Figure 1.2 Client server architecture	2
Figure 1.3 Microservice architecture	3
Figure 1.4 Virtualization and Containers	5
Figure 1.5 Docker architecture	6
Figure 1.6 Kubernetes logo…………………………………………………………………. 6
Figure 1.7 Interest over time	7
Figure 1.8 Simian Army 	13
Figure 1.9 Chaos toolkit logo	14
Figure 1.10 Five phases of chaos experiment ...……………………………..…….. 15
Figure 2.1: Kubernetes challenges…………………………………………………..17
Figure 4.1: Overview of the system ……………………………………………… 23
Figure 4.2: Installing chaos toolkit ……………………………………………..…. 24
Figure 4.3: Installing chaosk8s extension ………………………………………….25
Figure 4.4: chaosistio extension installation ………………………………………. 25
Figure 4.5: experiment written on checking the availability of pods ………………26
Figure 4.6: Experiment done to check the health of the microservices …………… 27
Figure 4.7: Experiment failure …………………………………………………….. 28
Figure 5.1: experiment on health-check ……………………………………..…… 32
Figure 5.2: running experiment …………………………………………………… 32
Figure 5.3: new probe added ……………………………………………………... 33
Figure 5.4: experiment result ……………………………………………………... 33
Figure 5.5: PDF report …………………………………………………….…… 34

[bookmark: _Toc51621965]List of Tables

Table 4.1: Tools and Languages to be used in implementation…………………….28

[bookmark: _Toc51621966]List of Abbreviations

	Abbreviation
	Description

	AKS
	Azure Kubernetes Services

	AWS
	Amazon Web Service

	IT

HTTP

TCP

IP
	Information Technology

Hypertext Transfer Protocol

Transmission Control Protocol

Internet Protocol

	
	

1

1.0 [bookmark: _Toc51621967]INTRODUCTION

With the rapid development and advancement of computer science and software engineering, software programs have to move on and adapt new concepts and technologies. For a certain period of time, monolithic architecture has been mainly used to handle software programs. Monolithic application is a single-tiered software application where different components combined into a single program from a single platform [1].
[image: A picture containing drawing

Description automatically generated]
	Figure 1.1: Monolithic architecture [1]
The advancement and the complexity of applications urged to make a move on from monolithic architecture as it was hard to handle those complex applications with monolithic architecture. Therefore, the software programs were moved to client-server-based architecture, which divides the application into two sections as Client and Server. Server acts as producer and client acts as consumer.

[image: A picture containing drawing

Description automatically generated]
			Figure 1.2: Client server architecture
This is also known as network computing structure, when client sends a request to the server through internet, server accepts and deliver the request back to client. Communication is typically done using TCP/IP protocol suite. Connection is established until the end of message exchanging from both ends. When looking into advantages of this architecture, the centralized architecture helps data with access controls that are enforced by security policies. If a large number of clients requests data simultaneously it might get overloaded and the service will be interrupted [2]. Therefore, with the complexity of the software programs, client server architecture could not handle these applications.
Microservice architecture follows single responsibility principle which was brought forward by Robert C. Martine. Microservice architecture restructure an application as a collection of services which are
· Highly maintainable
· Loosely coupled
· Independent
· Organized around business capabilities
This allowed a reliable delivery of complex applications, where more and more large scale companies started adapting microservice architecture to their system [3].

[image:]
			Figure 1.3: Microservice architecture
Leading companies like Amazon, Netflix, SoundCloud moved on from monolithic to microservice architecture as it has the ability to handle complex and heavy loaded applications with the ability to deploy loosely coupled services independently which can be scaled easily as needed. The performance, efficiency, reliability, and availability factors had a grate impact with the adaptation of this microservice architecture.
Microservices run on single domain, cross-domain operations are not allowed. HTTP is recommended for communication between services, this allows coding in any language that supports RESTful services [4].

What are the benefits of microservice architecture?
· Faster development
· Scalable
· Resilient
· Easy to deploy
· Accessible
· More open
Despite the many advantages microservices provide, there are a series of challenges that microservice architecture must face,
· Building: Identification of dependencies between services take a considerable time and effort.
· Testing: End-to-end testing is critical in microservice applications as one failure can be an impact on others.
· Versioning: must maintain compatibility
· Monitoring: Centralized view of the system
· Debugging
Taking on the challenges of microservices, a new concept called “Containerization” came up. The idea of containers was started way back in 1979 with UNIX Chroot. It is a UNIX operating-system system call for transforming the root directory of a process, and it is children to a new position in the filesystem, which is only visible to a given process [5].
Container is a unit of software which encapsulate code and all its dependencies, where the application can run reliably in any environment. When compared to Virtual machines. Containers are smaller in capacity; this makes higher server efficiencies and reduce costs.
 VMs require an underlying Operating system of its own and the hardware is virtualized, a hypervisor is needed to run VMs. Containers shares the host OS kernel and binaries and libraries too. Thus, containers are light weight than VMs.

[image: A screenshot of a cell phone

Description automatically generated]
			Figure 1.4: Virtualization and Containers
With the emerging of containerization, service providers came up with container platforms such as Linux VServer, Solaris Containers, Open VZ, Warden, Docker and many more [6].Among these platforms, Dockers stood up in the field of Containerization,
Main advantages of Docker are,
· Speed
· Portability
· Rapid Delivery
· Density
Furthermore, since all required dependencies, libraries, and all other components needed for the microservice packaged up in the container itself, the software is isolated from its environment, ensuring the performance and the functionality of the software remain the same regardless of the underlying platform.

[image: A screenshot of a cell phone

Description automatically generated]
			 Figure 1.5: Docker architecture
Usage of Docker containers allow he users to run, create and manage containers in a single operating system. Nevertheless, with the use of docker containers different kinds of problems started coming up in production, node management, performance improvements and scalability. Concept of Kubernetes came up to overcome the above-mentioned problems.
[image:]
				Figure 1.6: Kubernetes logo
Kubernetes is an open-source container orchestration platform which automates many processes that were done manually in deploying, scaling and managing containerized applications [7].Using Kubernetes over dockers will give you advantages such as
· Container orchestration across multiple hosts
· Maximize resources
· Scaling applications and resources
· Manage services
· Health-checks and self-heal applications
With the interesting features of Kubernetes, the popularity of this platform started increasing drastically,
[image: A screenshot of a social media post

Description automatically generated]
Figure 1.7: Interest over time [8]

Failures are inevitable, even a strongest platform with concrete operations infrastructure can face outage in production, when system’s threshold to withstand turbulent conditions go out of control. There is no single reason why a system fails, and it is not possible to immediately address a failure without prior knowledge on why and when that specific failure might occur, the same implies to widely used Kubernetes platform. Even when all of the individual services in a Kubernetes environment are functioning properly, the interactions between those services can cause unpredictable outcomes [9]. Resiliency in the sense, it is the ability recover from failures. To evaluate the resiliency of microservices, a concept called Chaos Engineering has been introduced. Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in production [9].Chaos Engineering concept was brought up by Netflix to identify its system weaknesses. FIT tool laid the foundation to build up the Chaos monkey tool which allows to inject failures carefully to the system and examine the behavior [10].
The proceeding sections in this document discuss about the resiliency evaluation of Kubernetes cluster using chaos engineering. A Clear and better picture of the possible failures can be obtained and analyzed. Lastly, the document also discusses future work and suggested improvements to the developed solution along with an overall conclusion of the research conducted.

[bookmark: _Toc51621968]1.1 Background and Literature

With the use of Kubernetes, managing and maintaining complicated applications became comfortable. The global application container market is predicted to grow from USD 1.2 billion in 2018 to USD 4.98 billion by 2023 [11].63% of enterprises are adopting Microservices as the primary architecture. 58% of companies are using Kubernetes in production, while 32% of companies are evaluating Kubernetes for future use.
Kubernetes brought out some new terminologies into the IT vocabulary, such as Pods, Nodes, Deployments and etc. It is important to get a rough understanding about these terms and how they work in order to get along with Kubernetes.
· Pods
Smallest unit of a Kubernetes cluster. It can be identified as a small container. Pod can behave as a single application as resources such as memory and storage are shared among containers within a single pod. However, the most common practice is to have a single container per pod.

· Deployments
Deployment decides and defines the scale of the application, which is running inside the Kubernetes cluster. It describes the number of identical pods to be deployed in the cluster to increase the reliability of the application. Kubernetes takes care of the pod health and takes necessary action to keep the application up and running.

· Services
A service is an interpretation of a set of pods. As the pods can be replaced, the IP addresses of the pods can be changed. A service exposes a single endpoint for a particular service, which can be consumed by other microservices, and it is mapped with pods. Therefore, for the outside network, there is no visible change.

· Node
In Kubernetes, there are two main types of nodes.
1. Master Node
2. Worker (slave) nodes

A node controls and manages pods. It acts as the host machine, which can either be physical or virtual. There can be multiple pods in one node, and the node should accommodate all the resource requirements of the pod.
[image: A screenshot of a cell phone

Description automatically generated]
Figure 1.7: Kubernetes architecture

To remain available in the face of infrastructure outages in the cloud, a microservice must guard itself from failures of its dependencies unpredictable events are bound to happened in a distributed system. Distributed systems contain so many interacting components that the number of things that can go wrong is enormous. Hard disks can fail, the network can go down, a sudden surge in customer traffic can overload a functional component. These kinds of events lead to poor performance, and other undesirable behaviors. We will never be able to prevent all possible failure modes, but we can identify many of the weaknesses in our system before they are triggered by these events. Chaos Engineering is a method of experimentation on infrastructure that brings systemic weaknesses to light. This concept was introduced by Netflix to identify their system weaknesses [10].
In late 2010 Netflix moved from physical infrastructure to cloud infrastructure. Chaos monkey was introduced by Netflix as tool to evaluate the resiliency of microservices [10]. When the services go company, reputation is affected, and a huge loss could be occurred. Complex and sophisticated systems use chaos engineering to reduce the amount of downtime costs. It randomly selects a running instance of a service and kill it. Through automation, redundancy, fallbacks, and other best practices of resilient design, engineers quickly make the failure scenario irrelevant to the operation of their service.
Chaos engineering follows several sets of principles [12],
· Define your system
First it is important to define the normal state of the system. The key metrics that are needed to be tracked measured and monitored must be defined. By determining and understanding the metric indicating when the system is healthy, we can identify the metric thresholds to identify system failures.

· Realistically disrupt your System
Think about the possible disrupts that your system can face, such as heavy traffic, server downtime, high latency and with the use of chaos tools, try to create those conditions and test them on the system and see how the system responds.

· Minimizing the blast radius
As we perform these tests on a working system, chaos engineers have to control the radius of impact as it should not impact on the customer satisfaction by interrupting the system functionalities.

· Continuous chaos
Continuous chaos allows the team to identify issues over time. Therefore you can continuously improve current system and the future systems. New services can be created with lesser issues and better performance and availability.
First Netflix came up with the chaos experimenting tool which is known as Chaos Monkey. Chaos monkey can randomly kill instances and create chaos in the system without interrupting customers.

With the success of chaos monkey, Netflix came up with a set of tools naming them as Simian Army [13].
· Latency Monkey
This can induce delays in the communication and examine the system behavior. Creating very large delays can stimulate a service downtime without physically bringing services down.

· Conformity Monkey
This detects the instances that are not following the best-practices and shuts them down. Therefore, the team can restart the instance properly.

· Doctor Monkey
This monitors the health and detect unhealthy instances. Unhealthy services are removed, and the owners can find out the reason for the cause.

· Janitor Monkey
This can search for unused resources and dispose them. It makes sure that the system utilizes the resources without wasting.

· Security Monkey
Detects security violations and vulnerabilities, instances with configuration issues and terminates the offending instances.

· Chaos Gorilla
This is as same as chaos monkey, the difference is that it can stimulate a downtime of an entire availability zone

[image: A picture containing drawing

Description automatically generated]
		Figure 1.8: Simian Army

With the outcome of these tools, other companies and organizations also started producing chaos engineering tools such as gremlin, chaos toolkit.
Russ Miles and Sylvain came up with the chaos toolkit in October 2017 with the help of chaos engineering book from the Netflix crew. They wanted to take chaos engineering beyond from chaos engineers. This uses JSON files for writing experiments which is familiar with many engineers [14].
[image: A picture containing flower

Description automatically generated]
Figure 1.9: Chaos toolkit logo

When performing a chaos experiment, there are five phases to be followed,
1. Steady state
Identify the regular behavior of the system.

2. Hypothesis
After selecting a metric and defining steady state, you have to start asking questions. For instance, what if the database stop working?

3. Design the Experiment
In order to satisfy your hypothesis, you have to start defining your experiments

4. Learning and Results
After conducting the experiment, you have to collect results and come up with a conclusion.

5. Fixes
Find and explore to come up with solutions to the failures.
[image: A picture containing drawing, clock

Description automatically generated]
Figure 1.10: Five phases of chaos experiment

[bookmark: _Toc51621969]1.2 Research Gap

The primary research gap that this research aims at fulfilling is the gap that exists in current methodologies used in the governance and optimization of microservice deployments, particularly concerning Kubernetes. A detailed analysis of published research papers throughout the years has managed to highlight some of the issues that are present in current microservice governance methodologies and thereby enable in the identification of the research gap, as mentioned in the previous statement.
The initial inspiration for the identification of this research problem and also the objectives of this research can be found in [15]. This publication clearly describes some of the key challenges faced in the deployment of microservices and the need for APM tools, especially those deployed in containers to include additional measures to monitor microservices such that they could be used as input for resilience mechanisms and creation of auto-scaling policies. Microservices deployment strategies have not focused on considering the resiliency of microservices. Even though fault tolerance and resiliency evaluations have been done on microservices, the results of them are only used to identify the weaknesses of the system. This research aims to analyze the resiliency of the microservices and use the results to come up with an optimal deployment strategy to a better microservice governance.
However, when it comes to the deployment of the optimal deployment strategy, generated at the end of the solution, support for auto-deployment is crucial. Still there is no consideration given towards the dependency level, resilience analysis, and load prediction, which are the key pillars of this research.

2.0 [bookmark: _Toc51621970]RESEARCH PROBLEM

With the popularity and the success achieved by Kubernetes over time, it has to face some challenges along the path. Kubernetes allows microservice users for a better monitoring, performance optimizations and resource utilizations, still it go through some concerns and challenges.

Some of the known problems to Kubernetes [16],

· Complexity
· Kubernetes itself is quite complex to install, configure and manage
· With the increased number of nodes, pods, and services, it is more challenging to get a holistic idea about the microservice architecture.
· Monitoring the network traffic and the resource utilization for computational purposes have to be done by installing several metric servers separately.
· Unknowingly over or under-allocating the available resources with negative results
· Pods might not start at all
· Pods might not be ready to cater to a higher load without any preparation.
· Pods might crash at terrible times under high workload
· Using/configuring external load balancers to access the applications via the internet – yet another technology to learn and manage
· Creating health checks for every component
· Integration into the build pipelines
· Learning YAML
· Monitoring

[image:]
			Figure 2.1: Kubernetes challenges

With the use of Kubernetes for microservice deployment, it provided a good environment to chaos engineering as it has native features for resiliency. As the fact resiliency was not taken into consideration lot of popular service providers suffered with unexpected failures. As a result, Netflix came up with the concept chaos engineering introducing tools like chaos monkey. Still the resiliency factor do not involve in the deployment strategies of microservices. Even though by performing resiliency tests and being prepared to the failures, still the possibilities of occurring failures are significant. Therefore, based on the issue mentioned above, it is clear that the resiliency factor has to be taken into consideration when planning the deployment strategy of microservices.
This research aims to address all the problems mentioned above by developing a model to consider the dependency levels between microservices to design a more improved deployment strategy and support automated deployment and provide a monitoring solution to get a better idea about the whole microservice architecture to get business-wise decisions.

3.0 [bookmark: _Toc51621971]OBJECTIVES
[bookmark: _Toc51621972]3.1 Main Objective

The main objective of this research to perform a resiliency evaluation using the principles of chaos engineering. Therefore, users can get a clear and better idea of the possible failures that the system can face and take measures to avoid them. This aids in making decisions regarding the deployment strategy of the microservice architecture.

[bookmark: _Toc51621973]3.2 Specific Objectives

The following are the sub-objectives of conducting this research.
· Study and explore about chaos engineering.
· Configuring Kubernetes cluster to perform chaos experiments.
· Configure Chaos toolkit to perform experiments on Kubernetes cluster.
· Identify Steady state metrics of the cluster.
· Create chaos experiments.
· Generate report.
· Create a dashboard to display

4.0 [bookmark: _Toc51621974]METHODOLOGY
[bookmark: _Toc456821409][bookmark: _Toc33555876][bookmark: _Toc51621975]4.1 Requirement Gathering
[bookmark: _Toc456821410][bookmark: _Toc33555877]
Requirement gathering for the research was done by analyzing related research publications through online resources. The focal point on this study is to identify existing or similar developed systems and to study about the methodology used.

[bookmark: _Toc51621976]4.1.1 Past Research Analysis

Past research analysis was primarily performed through reading research publications mainly focused on key areas such as microservices, Kubernetes, resiliency, chaos engineering, chaos monkey and targeted attacks The primary focus was given in the identification of the methodology used, tools used, experiments conducted, as well as the overall findings of the research with respect to resiliency of microservices and chaos engineering.

[bookmark: _Toc456821412][bookmark: _Toc33555878][bookmark: _Toc51621977][bookmark: _Toc456821413]4.1.2 Identifying Existing Systems

Existing systems were primarily identified through referring research publications as well as referring a variety of online sources. A key focus was given in the identification of the existing feature they offered as well as the potential drawbacks in the technology and methodology used.

[bookmark: _Toc33555879][bookmark: _Toc51621978]4.2 Feasibility Study
[bookmark: _Toc33555880][bookmark: _Toc51621979]4.2.1 Technical Feasibility

Technical feasibility was a key factor considered in the requirements analysis phase of this research project since this project mainly focused on the configuring the required tools to perform resiliency evaluation. A key focus was given in the identification of potential system requirements as well as the required tools and technologies that may be used in performing targeted attacks and defining metrics required.

4.2.1.1 Knowledge on Kubernetes

To develop the optimization model, all members should have basic knowledge of Kubernetes and its relevant components. Members should be able to perform basic configuration and should have sufficient knowledge and practical experience on how to deploy microservices through Kubernetes.

[bookmark: _Toc33555881]4.2.1.2 Knowledge on chaos engineering

To perform with resiliency evaluation on Kubernetes clusters, the concept that has to be followed is chaos engineering, Therefore, studying about chaos engineering, the rules and principles of it and the practical manipulation of chaos principles has to be studies precisely.

4.2.1.3 Knowledge on chaos toolkit

Chaos toolkit is the tool that is being used to perform chaos experiments. How to set up, how to configure this tool has to be studies thoroughly in order to start dealing with Kubernetes clusters. The steps to be followed and the technical knowledge of this tool has to be familiar. The chaos toolkit documentation has to be followed strictly to get the needed knowledge.

4.2.1.4 Knowledge in Microservices

The topics like containerization, dockers, Kubernetes, and service mesh are all based on microservices. Therefore, having a good idea and understanding of the concepts and the techniques of the microservice architecture is highly essential.

4.2.1.5 Knowledge in JSON

Chaos toolkit experiments are coded in JSON files. Therefore, the knowledge on formatting and usage of JSON notation is important.

4.2.1.6 Knowledge in Python

Chaos toolkit runs on python environment. Python 3 was used to create the environment to install and use chaos toolkit. Basic knowledge about python commands were useful.

[bookmark: _Toc51621980]4.2.2 Schedule Feasibility

[bookmark: _Toc456821417]The schedule feasibility was also a key factor considered throughout this research. A key focus was given in the identification time periods to set up the required tools to perform resiliency evaluation.

[bookmark: _Toc33555882][bookmark: _Toc51621981]4.2.3 Economic Feasibility

A key focus was given in the identification of the possible costs that might be incurred in the development process, as well as the costs that may be incurred in the use of the planned development tools and technologies.

[bookmark: _Toc33555883][bookmark: _Toc51621982]4.3 Requirement Analysis

The requirement analysis phase was one of the keys phases in this research project since it enabled in the identification of a variety of factors that should be considered in the implementation process of this research.
During this process, the information gathered from the various sources during the requirement gathering phase was analyzed. As a result, the critical factors related to the possible challenges that may be encountered as well as insight into the methodology and also a clear understanding of the use of possible and tools and technology were also able to be easily identified.
Furthermore, a clear idea of the scope of the research, as well as the feasibility of the project, was also able to be identified during this phase. Requirement analysis also helped in the determination of the existing research gaps as well as provide insight into the identification underlying research problem as the research.

[bookmark: _Toc51621983]4.4 System Analysis

[bookmark: _Toc51621984]4.4.1 Software Solution

The overview of the system is as follows. Its structure is mainly composed of the following components.
· Configuring chaos toolkit with Kubernetes cluster.
· Perform Experiments on different conditions.
· Identifying faults and possible threats
· Rolling back chaos done to the application
· Generate report on experiments
· Creating dashboard for the user interaction
[image:]

Figure 4.1: Overview of the system

[bookmark: _Toc51621985]4.4.2 Configuring Chaos toolkit

To configure chaos toolkit, first requirement was to install python3 or higher. As the configuration was done on Linux, windows terminal was used to create Unix environment. To use pip commands, pip has to be installed and the chaos toolkit is installed in a local virtual environment.
[image: A screenshot of a cell phone

Description automatically generated]

Figure 4.2: Installing chaos toolkit

[bookmark: _Toc51621986]4.5 System Development and Implementation

The steps followed to reach the solution are as given below.
1. Download and install windows terminal.
2. Install python.
3. Install Chaos toolkit.
4. Install plugins.
5. Declaring required variables.
6. Writing a script to get details from Kubernetes cluster.
7. Writing chaos experiments on Kubernetes cluster.
8. Executing experiments and examine the outcome.
9. Generate reports.
10. Creating a dashboard to display results.
[bookmark: _Toc51621987]4.5.1 Installing plugins

Chaos toolkit has its own plugins to do experiments on Kubernetes cluster. Chaosk8s extension provides a set of modules to deal with Kubernetes clusters and to perform different actions on cluster.

[image: A close up of text on a black background

Description automatically generated]
Figure 4.3: Installing chaosk8s extension

 Other than that, some other extensions were useful, Chaos Istio extension was helpful in handling http related experiments.
[image: A close up of text on a black background

Description automatically generated]
Figure 4.4: chaosistio extension installation

4.5.2 Writing chaos experiments
When writing chaos experiments, chaos principles must be followed. In respect to the application, the experiments may differ, some of the experiments conducted on sample Kubernetes cluster are discussed below.

[image: A screenshot of a cell phone

Description automatically generated]
Figure 4.5: experiment written on checking the availability of pods

In the above experiment, it checks whether if a pod is terminated, will the other pods be available. Tolerance number suggests the expected number of pods with the relevant namespace. It checks before the pod termination and after the termination, the experiment will fail with an exit code 1, if the expected number of pods are not up and running.

[image: A screenshot of a cell phone

Description automatically generated]
Figure 4.6: Experiment done to check the health of the microservices

The above experiments check for the health of microservices when a pod is terminated. Using ingress gateway, which is configured to the Kubernetes cluster, the IP address is extracted using the ingress variables and a request is sent to the application and expects for a response. Then the pod is terminated and after a brief pause another request is sent and check or a response. If a respond is made the experiment will pass, otherwise the experiment fails.
[image: A screenshot of a cell phone

Description automatically generated]
Figure 4.7: Experiment failure

These experiment results are being converted into a pdf report for a clear picture can be viewed by the user.
To host this application, a flask server is created using python. A set of python functions are implemented to extract the data from the kubernetes cluster via kubectl and to store them in a variable. A set of experiment templates are created and the cluster details are used in the experiment templates and a set of yaml files are being created for each and every instances of the cluster following the templates given. These experimets will be running sequentially and for each experiment a json file will be created including the experiment details and the results. After that, pdf or html report will be created including the results and details of the experiments.

	Programming Language s
	Python
JavaScript

	Configuration Languages
	YAML
JSON

	Tools
	Istio
Chaos toolkit
Windows terminal

Table 4.1: Tools and Languages to be used in implementation

4.6 [bookmark: _Toc33555886][bookmark: _Toc51621988]Project Requirements
[bookmark: _Toc33555887][bookmark: _Toc51621989]4.6.1 Functional requirements

The primary functional requirements aimed at fulfilling during the implementation process in this research are as follows.
· Critical nodes should be identified from the co-dependency network developed.
· Suitable metrics should be identified as needed to be planning the deployment strategy.
· Targeted attacks should be performed by not interrupting the customers.
· Evaluation results should be processed to give a meaningful input to create the deployment plan.
· Dashboard UI should show all the information the user needs

[bookmark: _Toc33555888][bookmark: _Toc51621990]4.6.2 Non-Functional Requirements

The following are the non-functional requirements that are primarily being focused on during this research.
· Availability – The system should be able to function throughout the day without any restrictions.
· Efficiency – The system should be as efficient as possible and make use of minimal resources in the prediction process such that it does not affect the performance of the overall cluster.
· Performance – The system should be able to handle the vast amount of data it receives and be able to process the data without affecting the system performance.
· Interoperability – The system should be able to interact and communicate with the other components developed in this research and receive inputs as well as forward outputs to the desired components.

[bookmark: _Toc51621991]4.7 Commercialization

The commercialization of this research project is mainly considered through the development of a tool using the proposed model. The developed tool will be developed as a Business Intelligence Dashboard which makes use of the proposed model to provide developers and system administrators an easy and efficient way in which to optimize their Kubernetes deployment by aiming to provide the following benefits.
· Visualize the level of inter-dependency among deployed microservices
· Receive suggestions in potential ways to optimize the performance and configure current deployments and automatically perform deployments based on the suggestions.
· Provide an overview of the resiliency of the deployed microservices
The developed Business Intelligence Dashboard will allow users to access all the above-mentioned features and provide a holistic view of their deployments. Hence, this tool will be mainly targeted to be marketed as an APM tool for Kubernetes deployments for system administrators and developers. Due to the wide variety of APM tools currently available in the market which are mostly free and opensource, the initial plan is to develop this dashboard into an opensource tool to enter the current market space effectively. However, throughout the years, a freemium based marketing strategy will be adopted with the inclusion of additional features.

5 [bookmark: _Toc51621992]RESULTS AND DISCUSSION
[bookmark: _Toc51621993][bookmark: _Hlk51554272]5.1 Testing and Results

Through the evaluation of resiliency, it reveals important and critical failure possibilities that the application can go through. Chaos experiments can be done considering many facts and by creating different kind of scenarios to the system.
When performing chaos experiments on a cluster, it is important to control the blast radius. As the experiments are done on production, customers should not face any interruptions or discomforts.
Chaos toolkit has its own set of actions and probes that can be used to create chaos in a system, such as killing an instance, creating latency, terminating pods and nodes, draining nodes, doing health checks and many more.
An experiment done on sample Kubernetes cluster on the availability of the application when an instance is terminated is shown below.
[image: A screenshot of a cell phone

Description automatically generated]
Figure 5.1: experiment on health-check

What this experiment dose is, first as defined in the steady-state-hypothesis it sends a request and check for a response code of 200. Once it is successful, as mentioned in the method, terminated-pod action kills an instance and pauses for 2 seconds. Then it again sends a request and expect for 200 response code.
[image: A screenshot of a cell phone

Description automatically generated]
Figure 5.2: running experiment
If this experiment fails, as shown above. That means there is a threat to the availability of the system. Lack of replicas or higher dependency levels between the instances or some other problem may be causing this issue.
Another experiment was to check the health of the microservices when a random instance is killed. There are actions in chaos toolkits probes modules to check whether the microservices are healthy.
[image: A close up of text on a black background

Description automatically generated]
Figure 5.3: new probe added
Same as above, an instance was killed, and the probe was checked for the health of the microservices. The experiment turned out to be successful indicating that the microservices remained healthy before and after the instance was killed.

[image: A screenshot of a cell phone

Description automatically generated]
Figure 5.4: experiment result
In the same way by creating different environments in the system, we can analyze and recognize the thresholds, failures and possible failures of the application and take necessary actions to avoid them.
Furthermore, these experiment results can be obtained as a report in pdf, html or other formats as we prefer.
[image:]
Figure 5.5: PDF report

The experiments conducted on the cluster resulted in clearing out the system weaknesses and resilience level. As the experiments are done on a sample Kubernetes cluster which had a very few numbers of nodes and pods, significant results could not be obtained. With the use off extensions such as chaosk8.promethius we can extract metrics such as cpu usage, disk usage and etc. And also with the use of graphical dashboard such as Kiali and Grafana we can observe the fluctuations of the metrics and even create an alert system to notify the user when there is a significant change from the normal behavior. The overall aim of the research is achieved through the minor experiments performed.
With the overall system considering many important factors and optimizing them to come up with an optimal deployment plan, the resiliency factor works as an add-on factor which can be considered when deploying the cluster.

[bookmark: _Toc51621995]5.3 Research Findings and Discussion

This research depicts how the chaos experiments are done and the importance of chaos engineering. With the outburst of microservices and Kubernetes lot of large-scale companies, the concept of chaos engineering started getting popular. But the chaos engineering is not been practiced by most of the companies, the importance of resilience evaluation is highlighted throughout the research.
Reasons behind the lack of practicing chaos engineering are discovered as follows,
· Lack of documentation
· Not willing to take risks to move on from traditional testing like unit testing to new testing techniques
· Chaos experiments are mostly carried out in the production, therefore, companies are not willing to take the risk of practicing chaos engineering as they have the doubt of that their coustmers might face difficulties
· Lack of chaos engineering experties
With the emerging of new tools and technologies related to chaos engineering, the resources and the customer support platforms will be developed in the future. Throughout this research, a clear idea about chaos engineering was provided and a simple walkthrough about performing chaos experiments is explained.
It is evident that conducting chaos experiments on a Kubernetes cluster must be considered as a critical factor when deploying an application.

[bookmark: _Toc51621996]6.0 CONCLUSION

When considering Kubernetes cluster deployment strategies, the factor of resilience consideration is minimum. With the more and more complex applications coming up, the possibility of failures become more and more common. Therefore, the importance of chaos engineering will increase with time.
 As the concept is still new and fresh to the community, the documentation and technical experts are less. A proper study and researching are a must to understand and perform chaos experiments as it may interrupt the customer activities when experimenting on production. Chaos engineers must take the responsibility of controlling the blast radius to maintain the availability of the application while performing experiments.
This research, as described above, contributes to motivate, and encourage the IT community to research and study about chaos engineering and to adapt chaos engineering to their systems to make their applications resilient. The resilience evaluation can be considered as an extra factor to be focus on when deploying microservices.

[bookmark: _Toc51621997]References

[1] 	S. u. Haq, "Introduction to Monolithic Architecture and Microservice Architecture," [Online]. Available: https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63.
[2] 	M. Rouse, "Client-server model (client-server architecture)," SearchNetworking, [Online]. Available: https://searchnetworking.techtarget.com/definition/client-server#:~:text=denial%20of%20service.-,Client%2Dserver%20protocols,end%20have%20finished%20exchanging%20messages..
[3] 	Kong, "What are microservices?," Kong, [Online]. Available: https://microservices.io/.
[4] 	R. Deb, "A Brief Overview of Microservices," 18 06 2018. [Online]. Available: https://www.opensourceforu.com/2018/06/a-brief-overview-of-microservices/#:~:text=Microservices%20are%20about%20breaking%20up,they%20become%20easier%20to%20solve..
[5] 	J. Strotmann, Infographic: A Brief History Of Containerization.
[6] 	R. Osnat, "A Brief History of Containers," [Online]. Available: https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016.
[7] 	Red Hat, "What is Kubernetes?," Red Hat, [Online]. Available: https://www.redhat.com/en/topics/containers/what-is-kubernetes?exa47498546=&adobe_mc_sdid=SDID%3D08FF4B84B66CC413-4EE6B4E332DC7196%7CMCORGID%3D945D02BE532957400A490D4C%40AdobeOrg%7CTS%3D1600349135&adobe_mc_ref=https%3A%2F%2Fwww.google.com%2F.
[8] 	P. Belagatti, "Docker Swarm or Kubernetes?," [Online]. Available: https://dzone.com/articles/quotdocker-swarm-or-kubernetesquot-is-it-the-right.
[9] 	G. Chandra, "Improving kubernetes resiliency with chaos engineering," [Online]. Available: https://medium.com/faun/failures-are-inevitable-even-a-strongest-platform-with-concrete-operations-infrastructure-can-7d0c016430c6.
[10] 	C. Rosenthal and L. Hochstein, Chaos Engineering.
[11] 	"Application container market by service," Markets and Markets, [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/application-container-market-182079587.html.
[12] 	D. Holloran, "The Essential Chaos Engineering Principles," [Online]. Available: https://victorops.com/blog/essential-chaos-engineering-principles.
[13] 	Netflix, "The Netflix Simian Army," [Online]. Available: https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116.
[14] 	R. Miles, "The Language of Chaos Experiment in Chaos Tollkit," [Online]. Available: https://medium.com/chaos-toolkit/the-language-of-chaos-experiments-in-chaos-toolkit-bd55a5c04057.
[15] 	R. Heinrich, "Performance Engineering for Microservices: Research Challenges and Directions," [Online]. Available: https://www.researchgate.net/publication/313220433_Performance_Engineering_for_Microservices_Research_Challenges_and_Directions.
[16] 	L. E. Hetch, "Top challenges kubernetes users face with deployment," [Online]. Available: https://thenewstack.io/top-challenges-kubernetes-users-face-deployment/.
[17] 	A. Nagarajan, Automated Fault-Tolerance Testing.
[18] 	R. T. Fielding, "R. T.," in Architectural Styles and the Design of Network-based Software.
[19] 	"ORBITZ. Enabling Microservices," in DockerCon, 2015.

1

image1.jpeg
Monolithic Architecture

Business Layer

image2.png

image3.png

image4.jpg
abs
Docker Engine
Operating System Operating System

Infrastructure

ai e 4

Infrastructure

#oe 4
4

Virtualization Containers

image5.png
Docker_Client Docker_Host

{ docker build 4 Docker daemon

docker pull)

docker run

{

D — P
container
container

image6.jpeg
kubernetes

image7.png
® Kubernetes ® Docker Swarm
Search term Search term

Worldwide v Past 5 years v All categories ¥ Web Search ¥

Interest over time

Average Jun1,2014 Feb 21,2016 Nov 12,2017

image8.png
Master Node

Key Value Store -etcd

4..5 E E Kubelet

API

Container Runtime
<« Controllers (Docken [Pod |
Developer Server
Scheduler Network Proxy

(kube-proxy)

Worker Node

e |
B Croa

Network Proxy
(kube-proxy)

Worker Node

image9.jpg

image10.png
A chaosToolkit

image11.JPG
lai— & — &

Steady state Hypothesis Design the Learning and Fixes
experiment results

image12.png
Security is Top Challenge for Kubernetes Users

Security
Networking

Storage

Monitoring
Among organizations only

deploying containers to
on-premises servers, 54% cited
storage as a challenge but
only 9% cited scaling
deployments based on load

Complexity

Logging

Reliability

Scaling deployments
based upon load

Difficulty in choosing
an orchestration solution

Finding vendor support

% of Respondents Facing Each Challenge
(select all that apply)

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017, Q. What are your challenges in using/
deploying containers? (check all that apply). n=527.Note, only respondents managing containers with Kubernetes were included in the chart. THENEWSTACK

image13.png
Kubernetes Cluster

Generate

Collect metrics Analyze metrics Pty ED

Predicted
utilization values
and centrality
measures

Load Prediction
and centrality
evaluation

Optimal
Deployment
Strategy

Evaluated
Dependency level

Resiliency

Evaluation Resiliency Analysis

image14.JPG
Tucky@DESKTOP-29JARHE: /mnt/c/personal$ source ~/.venvs/chaostk/bin/activate
(chaostk) lucky@DESKTOP-29JARHE:/mnt/c/personal$ pip install chaostoolkit

Requirement already
Requirement already
stoolkit) (1.1.1)
Requirement already
it) (2.24.0)
Requirement already
(@-ilzD)

Requirement already
t) (5.3.1)
Requirement already
it) (1.5.0)
Requirement already

satisfied:
satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

satisfied:

m chaostoolkit) (0.1.11)

chaostoolkit in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (1.7.0)
click-plugins>=1.0.4 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chao

requests>=2.21 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolk
click>=7.0 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolkit)

PyYAML>=5.1.2 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolki
logzero>=1.5.0 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolk

python-json-logger>=0.1.11 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (fro

image15.JPG
(chaostk) Llucky@DESKTOP-29JARHE:/mnt/c/personal$ pip install chaostoolkit-kubernetes

Requirement already satisfied: chaostoolkit-kubernetes in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (0.22.0
)

Requirement already satisfied: dateparser in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolkit-k
ubernetes) (0.7.6)

Requirement already satisfied: kubernetes in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolkit-k
ubernetes) (11.0.0)

Requirement already satisfied: pyyaml in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolkit-kuber
netes) (5.3.1)

Requirement already satisfied: logzero in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from chaostoolkit-kube
rnetes) (1.5.0)

Requirement already satisfied: chaostoolkit-1ib>=0.20.0 in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (from
chaostoolkit-kubernetes) (1.15.0)

s Pl RSgRTRRe VnC, RS B Vo A o s O St o, SRV SR St) gy s)y SRR iR oey e S e o gy g agh o gy g] Speiging TGl Y G G S g RSl o et e S St S S S]

image16.JPG
(chaostk) lucky@DESKTOP-29JARHE:/mnt/c/personal$ pip install -U chaostoolkit-istio

Requirement already up-to-date: chaostoolkit-istio in /home/lucky/.venvs/chaostk/lib/python3.8/site-packages (0.1.4)
Requirement already satisfied, skipping upgrade: simplejson>=3.16.0 in /home/lucky/.venvs/chaostk/lib/python3.8/site-pac
kages (from chaostoolkit-istio) (3.17.2)

Requirement already satisfied, skipping upgrade: logzero==1.5.0 in /home/lucky/.venvs/chaostk/lib/python3.8/site-package
s (from chaostoolkit-istio) (1.5.0)

Requirement already satisfied, skipping upgrade: kubernetes>=8.0.0 in /home/lucky/.venvs/chaostk/lib/python3.8/site-pack
ages (from chaostoolkit-istio) (11.0.80)

Requirement already satisfied, skipping upgrade: chaostoolkit-1ib>=0.21.0 in /home/lucky/.venvs/chaostk/lib/python3.8/si
te-packages (from chaostoolkit-istio) (1.15.80)

Requirement already satisfied, skipping upgrade: websocket-client!=0.40.0,!=0.41.% !=0.42.% >=0.32.0 in /home/lucky/.ven
vs/chaostk/lib/python3.8/site-packages (from kubernetes>=8.0.0->chaostoolkit-istio) (0.57.0)

Requirement already satisfied, skipping upgrade: python-dateutil>=2.5.3 in /home/lucky/.venvs/chaostk/lib/python3.8/site

image17.JPG
ersion: 1.0.0
title: What happens if we terminate a Pod?
description: If a Pod is terminated, a new one should be created in its place.
tags:
- kas
- pod
steady-state-hypothesis:
title: Pod exists
probes:
- name: pod-exists
‘type: probe
‘tolerance: 3
provider:
type: python
func: count_pods
module: chaoskss.pod.probes
arguments:
label selector: app=reviews
ns: default
method:
- type: action
name: terminate-pod
provider:
type: python
module: chaoskss.pod.actions
func: terminate pods
arguments:
name_pattern: ratings
pauses:
after: 10

image18.JPG
version: 1.0.0
title: What happens if we terminate an instance of the application?
description: If an instance of the application is terminated, the applications as a whole should still be operational.

tags:
- kss
- pod
- http
configuration:
ingress_host:
type: env

key: INGRESS_HOST
steady-state-hypothesis:
title: The app is healthy
probe:
- name: app-responds-to-requests
type: probe
tolerance: 200
provider:
type: http
timeout: 3
verify tls: false
url: http://${ingress host}/demo/person
headers:

Host: go-demo-8.acme.com
method:
- type: action
name: terminate-app-pod
provider:
type: python
module: chaoskss.pod.actions
func: terminate pods
arguments:
label selector: app-go-demo-8
rand: true
ns: go-demo-8
pauses:
after: 2|

image19.png
\ et
[2020-01-16
[2020-01-16
[2020-01-16
[2020-01-16
[2020-01-16
[2020-01-16
[2020-01-16
[2020-01-16
[2020-01-16
bash-3.25 |

e
13:
13:
13:
13:
13:
13:
13:
13:
13:

—
100
101
103
103
103
103
103
103
103

STMd SREMMY StMAE TPV RIIESLs e TELE S e e
INFO] Action: terminate-app-pod

INFO] Pausing after activity for 2s...

INFO] Steady state hypothesis: The app is healthy

INFO] Probe: app-responds-to-requests

CRITICAL] Steady state probe 'app-responds-to-requests' is not in the given tolerance so failing this experiment
INFO] Let's rollback...

INFO] No declared rollbacks, let's move on.

INFO] Experiment ended with status: deviated

INFO] The steady-state has deviated, a weakness may have been discovered

image20.JPG
version: 1.0.0
title: What happens if we terminate an instance of the application?
description: If an instance of the application is terminated, the applications as a whole should still be operational.
tags:
- kss
- pud
- deployment
ingress_host:
type: env
key: INGRESS_HOST
steady-state-hypothesis:
title: The app is healthy

probes:
- name: app-respnds-to-requests
type: probe
tolerance: 200
provider:
type: http
timeout: 3

verify tls: false
url: http://${ingress _host}/productpage
headers:

host: default

method:
- type: action
name: terminate-pod
provider:
type: python
module: chaoskss.pod.actions
func: terminate pods
arguments:
name_pattern: ratings-vi
pauses:
after: 2

image21.JPG
steady-state-hypothesis:
title: The app is healthy
probes:
- name: all-apps-are-healthy
type: probe
tolerance: true
provider:
type: python
func: all microservices healthy
module: chaoskss.probes
arguments:
ns: default

image22.JPG
[2020-69-21 ©3:24:24 INFO] Validating the experiment's syntax
[2020-09-21 ©3:24:48 INFO] Experiment looks valid

[2020-09-21 ©3:24:48 INFO] Running experiment: What happens if we terminate an instance of the application?
[2020-09-21 03:24:48 INFO] Steady-state strategy: default

[2020-09-21 ©3:24:48 INFO] Rollbacks strategy: default

[2020-09-21 ©3:24:48 INFO] Steady state hypothesis: The app is healthy
[2020-09-21 ©3:24:U48 INFO] Probe: all-apps-are-healthy

[2020-09-21 ©3:24:51 INFO] Steady state hypothesis is met!

[2020-69-21 ©3:24:51 INFO] Playing your experiment's method now...
[2020-09-21 ©3:24:51 INFO] Action: terminate-pod

[2020-09-21 ©3:24:54 INFO] Pausing after activity for 16s...
[2020-09-21 ©3:25:04 INFO] Steady state hypothesis: The app is healthy
[2020-09-21 ©3:25:04 INFO] Probe: all-apps-are-healthy

[2020-09-21 ©3:25:06 INFO] Steady state hypothesis is met!

[2020-09-21 03:25:06 INFO] Let's rollback...

[2020-09-21 ©3:25:06 INFO] No declared rollbacks, let's move on.
[2020-09-21 03:25:06 INFO] Experiment ended with status: completed

image23.JPG
Experiment

What happens if we terminate an instance of the applica-
tion?

If an instance of the application s terminated, a new instance should be created

Summary
Status completed
Tagged k8s, pod, deployment
Executed From DESKTOP-20JARHE
Platform Linux-4.4.0-18362-Microsoft-x86_64-with-glibc2.29
Started Sun, 20 Sep 2020 21:54:48 GMT
Completed Sun, 20 Sep 2020 21:55:06 GMT
Duration 18 seconds
Definition

The experiment was made of 1 actions, to vary conditions in your system, and 0
probes, to collect objective data from your system during the experiment
Steady State Hypothesis

The steady state hypothesis this experiment tried was “The app is healthy”.

Before Run

The steady state was verified

Probe Tolerance Verified

all-apps-are-healthy True True

After Run

The steady state was verified

Prob

Tolerance Verif
e-healthy True True

allapps

Method

The experiment method defines the sequence of activities that help gathering
evidence towards, or against, the hypothesis.

