

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

M.V Lakshitha.

B.Sc. (Hons) Degree in Information Technology Specialized in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

B.Sc. (Hons) Degree in Information Technology Specialized in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

i

ii

Abstract

Deploying microservices, Kubernetes acts as a management tool which assists to gemerate a

better microservice governance.Advantages of using Kubernetes for microservice

deployments are the ability to scale cluster resources based on traffic, improve productivity,

security and more stables the application.This abilities of Kubernetes enables developers and

system administrators to reduce costs and make use of their deployed microservices more

effectively and efficiently.

However, even though the there are many researches and studies done on creating an optimal

deployment plan for microservices, the factors they have condsiderd are mainly the

dependency network distribution, CPU usage, memoy and network bandwith. Futuer

pedictions by analyzing these metics are not used to plan an optimal deployment plan and the

resiliency of microservices have not been taken into consideration

This research thereby aims to evaluate the resiliency of the microservices using chaos

engineering so as to provide an input to come up with an optimal deployment plan for

microservice governance

Keywords: Kubernetes, , Microservices, Resiliency, Chaos Engineering

iii

TABLE OF CONTENTS

Declaration.. Error! Bookmark not defined.

Abstract ..ii

List of Figures ... iv

List of Tables ... v

List of Abbreviations ... vi

1.0 INTRODUCTION .. 1

1.1 Background and Literature .. 3

1.2 Research Gap ... 5

1.3 Research Problem .. 6

2.0 OBJECTIVES .. 7

2.1 Main Objective ... 7

2.2 Specific Objectives ... 7

3.0 METHODOLOGY .. 8

3.1 Requirement Gathering ... 8

3.1.1 Past Research Analysis ... 8

3.1.2 Identifying Existing Systems .. 8

3.2 Feasibility Study ... 9

3.2.1 Technical Feasibility ... 9

3.2.2 Schedule Feasibility... 9

3.2.3 Economic Feasibility ... 9

3.3 Requirement Analysis .. 10

3.4 System Analysis .. 11

3.5 System Development and Implementation .. 12

3.6 Project Requirements .. 13

4.0 WORK BREAKDOWN .. 15

5.0 COMMERCIALIZATION ... 16

6.0 BUDGET ... 17

7.0 SUMMARY .. 18

8.0 REFERENCES ... 19

9.0 Appendices .. 21

iv

List of Figures

Figure 1.0 outages experienced by popular internet services………….……………..1

Figure 1.1 five phases of chaos engineering………………………………………….4

Figure 3.1 System Overview .. 14

v

List of Tables

Table 3.1 Tools and Technology .. 16

Table 5.1 Budget .. 20

vi

List of Abbreviations

Abbreviation Description

AWS Amazon Web Service

FIT Faliure Injection Testing

HTTP Hypertext transfer protocol

REST Representational state Transfer

1

1.0 Introduction

Modern online applications are moving rapidly towards microservice architecture

[1], as it supports quick changes and feedbacks to the user. In this architecture, the

application is a collection of web services, each serving a single purpose, i.e., a

microservice. Each microservice is developed, deployed and managed

independently; new features and updates are delivered continuously [2], hundreds of

times a day [3]–[5], making the applications extremely dynamic. Microservice

applications are typically polyglot: developers write individual microservices in the

programming language of their choice, and the communication between services

happens using remote API calls. As cloud-native applications, microservices are

designed to withstand infrastructure failures and outages, yet struggle to remain

available when deployed[6].

Figure 1.0 A subset of recent outages experienced by popular internet

services[9].

In the deployment of microservices, Kubernetes has become the most popular

platforms.It has the ability to manage and orchestrate containerized workloads and

services.The use of Kubernetes has therefore enabled developers the ability to move

on from the traditional deployment methodologies such as physical servers and

Virtual Machines and make use of the newer containerized deployment

methodologies through the use of open-source tools such as Docker. Furthermore,

since Kubernetes provides a vast array of features and services such as service

2

discovery and load balancing, storage orchestration, self-healing [7], it has managed

to become one of the leading container orchestration tools currently available.

Failures are inevitable, even a strongest platform with concrete operations

infrastructure can face outage in production, when system’s threshold to withstand

turbulent conditions go out of control. There is no single reason why a system fail and

it is not possible to immediately address a failure without prior knowledge on why

and when that specific failure might occur, the same implies to widely used

Kubernetes platform. Even when all of the individual services in a Kubernetes

environment are functioning properly, the interactions between those services can

cause unpredictable outcomes[8].

Resiliency in the sense, it is the ability recover from faliures. To evaluate the

resiliency of microservices, a concept called Chaos Engineering has been introduced.

Chaos Engineering is the discipline of experimenting on a distributed system in order to

build confidence in the system’s capability to withstand turbulent conditions in

production[8].Chaos Engineering concept was brought up by Netflix to identify its

system weaknesses. FIT tool laid the foundation to build up the Chaos monkey tool

which allows to inject faliures carefully to the system and examine the behavior[9].

This research aims to evaluate the resiliency of microservices of a system, to

generate an input to develop an optimal deployment statergy o microservice

governance.

3

1.1 Background and Literature

Popular large scale internet applications such as Netflix, Facebook, Amazon have

shown that in order to achive scalabilityLa, robustness and agility, it is important to

break a monolithic web application into a collection of web services, called

microservices [1]. Each microservice is a simple REST [13] based web service that

interacts with other services using HTTP. Modern applications leverage both

managed services offered by the hosting cloud platform . To reach loose coupling,

microservices use application protocols such as HTTP to provide better integration

with other microservices. Each microservice is owned and operated by an

independent team of developers. The ability to immediately integrate updates into the

production deployment [14] has led to a continuous software delivery model [15],

where development teams incrementally deliver features while incorporating user

feedback.

To remain available in the face of infrastructure outages in the cloud, a microservice

must guard itself from failures of its dependenciesunpredictable events are bound to

happened in an distributed system. Distributed systems contain so many interacting

components that the number of things that can go wrong is enormous. Hard disks can

fail, the network can go down, a sudden surge in customer traffic can overload a

functional component. These kind of events lead to poor performance, and other

undesirable behaviors. We’ll never be able to prevent all possible failure modes, but

we can identify many of the weaknesses in our system before they are triggered by

these events. Chaos Engineering is a method of experimentation on infrastructure

that brings systemic weaknesses to light. This concept was introduced by Netflix to

identify their system weaknesses[9].

In late 2010 Chaos monkey was introduced by Netflix as tool to evaluate the

resiliency of microservices[9]. It randomly selects a running instance of a service and

kill it. Through automation, redundancy, fallbacks, and other best practices of

resilient design, engineers quickly make the failure scenario irrelevant to the

operation of their service.

4

 Figure 1.1 five phases of chaos engineering[16]

When analyzing the optimal deployments of microservices, the fact resiliency has

not been considered as an important factor[11]. Dependency, CPU usage, disk,

memory like factors are considered mainly. Resiliency evaluation can be an

important in having an optimal microservice governance.

5

1.2 Research Gap

The primary research gap that this research aims at fulfilling is the gap that exists in

current methodologies used in the governance and optimization of microservice

deployments,particularly concerning Kubernetes. A detailed analysis of published

research papers throughout the years has managed to highlight some of the issues that

are present in current microservice governance methodologies and thereby enable in

the identification of the research gap, as mentioned in the previous statement.

The initial inspiration for the identification of this research problem and also the

objectives of this research can be found in [10]. This publication clearly describes

some of the key challenges faced in the deployment of microservices and the need for

APM tools, especially those deployed in containers to include additional measures to

monitor microservices such that they could be used as input for resilience mechanisms

and creation of auto-scaling policies.

Microservices deployment strategies have not focused on considering the resiliency of

microservices[11]. Eventhough fault tolerance and resiliency evaluations have been

done on microservices, the results of them are only used to identify the weaknesses of

the system.

This research aims to analyse the resiliency of the microservices and use the results to

come up with an optimal deployment strategy to a better microservice governance.

6

1.3 Research Problem

With the use of Kubernetes for microservice deployment, it provided a good

environment to chaos engineering as it has native features for resiliency[16]. As the

fact resiliency was not taken into consideration lot of popular service providers

suffered with unexpected faliures[9].

As a result Netflix came up with the concept chaos engineering introducing tools like

chaos monkey, Latency Monkey and FIT[8]. Still the resiliency factor do not involve

in the deployment strategies of microservices. Eventhough by performing resiliency

tests and being prepared to the faliures, still the possibilities of occuring faliures are

significant.

Therefore based on the issue mentioned above, it is clear that the resiliency factor has

to be taken into consideration when planning the deployment strategy of

microservices.

7

2.0 OBJECTIVES

2.1 Main Objective

The main objective of this research is to evaluate the resiliency of microservices via

chos engineering.

2.2 Specific Objectives

The specific objectives for the research project are as follows.

• To develop a suitable environment to perform resiliency evaluation

• Perform health checks on the system to determine wether it is possible to

perform targeted attacks on services without inerruptin the client.

• Setting up FIT to perform targeted attacks.

• Setting up chaos monkey to perform random attacks on services

• Evaluat the results of the resiliency testing.

8

3.0 METHODOLOGY

3.1 Requirement Gathering

Requirement gathering for the research was done by analyzing related research

publications through online resources. The focal point on this study is to indentify

existing or similar developed systems and to study about the methodology used.

3.1.1 Past Research Analysis

Past research analysis was primarily performed through reading research publications

mainly focused on key areas such as microservices, Kubernetes, resiliency, chaos

engineering, chaos monkey and targeted attacks

The primary focus was given in the identification of the methodology used, tools

used, experiments conducted, as well as the overall findings of the research with

respect to resiliency of microservices and chos engineering.

3.1.2 Identifying Existing Systems

Existing systems were primarily identified through referring research publications as

well as referring a variety of online sources. A key focus was given in the

identification of the existing feature they offered as well as the potential drawbacks

in the technology and methodology used.

9

3.2 Feasibility Study

3.2.1 Technical Feasibility

Technical feasibility was a key factor considered in the requirements analysis phase

of this research project since this project mainly focused on the configuring the

required tools to perform resiliency evaluation. A key focus was given in the

identification of potential system requirements as well as the required tools and

technologies that may be used in performing targeted attacks and defining maetics

required.

3.2.2 Schedule Feasibility

The schedule feasibility was also a key factor considered throughout this research. A

key focus was given in the identification time periods to set up the required tools to

perform resiliency evaluation.

3.2.3 Economic Feasibility

A key focus was given in the identification of the possible costs that might be

incurred in the development process, as well as the costs that may be incurred in the

use of the planned development tools and technologies.

10

3.3 Requirement Analysis

The requirement analysis phase was one of the keys phases in this research project

since it enabled in the identification of a variety of factors that should be considered

in the implementation process of this research.

During this process, the information gathered from the various sources during the

requirement gathering phase was analyzed. As a result, the key factors related to the

possible challenges that may be encountered as well as insight into the methodology

and also a clear understanding on the use of possible and tools and technology were

also able to be easily identified

Furthermore, a clear idea of the scope of the proposed research, as well as the

feasibility of the project, was also able to be identified during this phase.

Requirement analysis also helped in the determination of the existing research gaps

as well as provide insight into the identification underlying research problem as the

research.

11

3.4 System Analysis

Using the tools like chaos monkey and IFT, the targeted attacks will be performed to

relevant microservices. It is important to perform health checks and find out a

suitable time and suitable way to do these attack so as no to interrupt with the

availability of the other services.

Figure 3.1 System Overview

12

3.5 System Development and Implementation

The steps in the development of the proposed resiliency evaluation are as follows.

1. Obtain the list microservices that show a high level of dependency based on

the proposed co-dependency network.

2. Perform health checks in the system before stepping into targeted attacks.

3. Determine how to perform targeted attacks on nodes, without interrupting

other functions.

4. Selecting suitable merics to be analized.

5. Perform random attacks using chaos monkey.

6. Perform targeted attacks on highly dependent microservices to observe the

behavior using Faliure Injection Testing tool.

7. Process the evaluation results to depict a clear idea about the behavior or the

importance of certain nodes.

8. Implement UI dashboard th display the results to the user.

Tools • Chaos Monkey

• Faliure Injection Testing

• Doctor Monkey

Programming Languages • Python

Libraries • Chaos Toolkit
• Spinnaker

Table 3.1: Tools and Technology

13

3.6 Project Requirements

3.6.1 Functional requirements

The primary functional requirements aimed at fulfilling during the implementation

process in this research are as follows.

• Critical nodes should be identified from the co-dependency network

developed.

• Suitable metrics should be identified as needed to planning the deployment

strategy.

• Targeted attacks should be performed by not inturupting the customers.

• Evaluation results should be processed to give a meaningful input to create

the deployment plan.

• Dashboard UI should show all the information the user needs.

3.6.2 Non-Functional Requirements

The following are the non-functional requirements that are primarily being focused

on during this research.

• Availability – The proposed system should be able to function throughout the

day without any restrictions.

• Efficiency – The proposed system should be as efficient as possible and make

use of minimal resources in the prediction process such that it does not affect

the performance of the overall cluster.

• Performance – The proposed system should be able to handle the vast amount

of data it receives and be able to process the data without issue.

14

• Interoperability – The proposed system should be able to interact and

communicate with the other components proposed in this research and

receive inputs as well as forward outputs to the desired components.

15

4.0 WORK BREAKDOWN

The following are the key tasks that are expected to be performed in the

implementation process of this research.

• Examine the dependency network and identify critical nodes

• Preparing Chaos Monkey tool to evaluate resiliency of microservices.

• Finding out the best metrics to evaluate the resiliency.

• Performing targeted attacks on nodes, bridges and in other selected ways.

• Extract the results and process them to a meaningful output.

• Provide the evaluation results to create an optimal deployment plan.

• Development of the UI dashboard, which displays the final findings of the

optimization process to the user.

16

5.0 COMMERCIALIZATION

The commercialization of this research project is mainly considered through the

development of a tool through the use of the proposed model. The developed tool

will be developed as a Business Intelligence Dashboard which makes use of the

proposed model to provide developers and system administrators an easy andefficient

way in which to optimize their Kubernetes deployment by aiming to provide the

following benefits.

• Visualize the level of inter-dependency among deployed microservices

• Receive suggestions in potential ways to optimize the performance and

configurecurrent deployments and automatically perform deployments based on

thesuggestions.

• Provide an overview of the resiliency of the deployed microservices

• Automatically configure and auto-scale Kubernetes autoscaling tools based on

predicted load and centrality measures.

The developed Business Intelligence Dashboard will allow users to access all the

above-mentioned features and provide a holistic view of their deployments. Hence,

this tool will be mainly targeted to be marketed as an APM tool for Kubernetes

deployments for system administrators and developers. Due to the wide

variety ofAPM tools currently available in the market which are mostly free and

opensource,the initial plan is to develop this dashboard into an opensource tool in

order to enter the current market space effectively. However, throughout the years, a

freemium based marketing strategy will be adopted with the inclusion of additional

features.

17

6.0 BUDGET

The main aspect of this research is primarily focused on the development of an

optimization model that aids in the deployment of microservices through

Kubernetes,and hence it is primarily a software-based solution with no inclusion of

external hardware.

However, there will be some costs expected to be incurred, as given in the table below.

Internet use and web hosting 6000 LKR

Publication costs 2000 LKR

Stationary 2000 LKR

TOTAL 10000 LKR

Table 6.1: Budget

Note: Azure Student subscription with $100 of free credit for 12 months will be used

for this project. Therefore, resource creation for the VMs needed for testing and

creation of the Kubernetes cluster to be used for implementation purposes could be

obtained without any additional cost and hence is not included in the budget.

18

7.0 SUMMARY

The primary objective of this proposed research is to develop a model that aims to

improve microservice governance in Kubernetes deployments through a network

science-based approach.

This research, as described above, thereby aims to provide a input to create a optimal

deployment strategy, by evaluating the resiliency of the microservices and how it will

affect on other services. This helps to deploy microservices in a way which leads to

less number of faliures and better resiliency.

19

8.0 References

[1] S.Neuman, Building Microservices: “Designing Fine-Grained Systems”. O’Reily

Media, February 2015

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation, 1st ed. Addison-Wesley

Professional, July 2010.

[3] “GRUBHUB. Enabling Continuous (Food) Delivery at GrubHub,” DockerCon

(2015).

[4] “HUBSPOT. How We Deploy 300 Times a Day,”

http://product.hubspot.com/blog/how-we-deploy-300-times-a-day, November 2013,

[ONLINE].

[5] “ORBITZ. Enabling Microservices at Orbitz,” DockerCon (2015).

[6] Gremlin:SystematicResilienceTestingofMicroservices,Victor Heorhiadi UNC

Chapel Hill victor@cs.unc.edu,Shriram Rajagopalan IBM T. J. Watson Research

[7] “What is Kubernetes,” Kubernetes. [Online].

Available:https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[Accessed: 13-Feb-2020].

[8] “Improving Kubernetes Resiliency with Chaos Engineering”[Online]. Available:

https://medium.com/faun/failures-are-inevitable-even-a-strongest-platform-with-

concrete-operations-infrastructure-can-7d0c016430c6. [Accessed:10-Feb-2020]

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://medium.com/faun/failures-are-inevitable-even-a-strongest-platform-with-concrete-operations-infrastructure-can-7d0c016430c6
https://medium.com/faun/failures-are-inevitable-even-a-strongest-platform-with-concrete-operations-infrastructure-can-7d0c016430c6

20

[9] Chaos Engineering, Building Confidence in System Behavior through

Experiments. Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak, Nora Jones, and

Ali Basiri

[10] Heinrich, Robert & van Hoorn, André & Knoche, Holger & Li, Fei &

Lwakatare, Lucy Ellen & Pahl, Claus & Schulte, Stefan & Wettinger, Johannes.

(2017). “Performance Engineering for Microservices: Research Challenges and

Directions”.

[11] “Optimal and Automated Deployment for Microservices”. Mario Bravetti,

Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi

[12] “Automated Fault-Tolerance Testing”. Adithya Nagarajan, Ajay Vaddadi.

[13] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” Ph.D. dissertation, 2000.

[14] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving

Software Quality and Reducing Risk, 1st ed. AddisonWesley Professional, June

2007.

[15] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation, 1st ed. Addison-Wesley

Professional, July 2010.

[16] “How chaos engineering will guarantee the resilience of your services”[Online].

Available:https://eldermoraes.com/how-chaos-engineering-will-guarantee-the-

resilience-of-your-services/[Accessed:18-February-2020]

https://ieeexplore.ieee.org/author/37267762900
https://ieeexplore.ieee.org/author/37085849772
https://eldermoraes.com/how-chaos-engineering-will-guarantee-the-resilience-of-your-services/
https://eldermoraes.com/how-chaos-engineering-will-guarantee-the-resilience-of-your-services/

21

9.0 Appendices

http://arduino.cc/en/uploads/Main/ArduinoUnoBack.jpg

