A NETWORK SCIENCE BASED APPROACH FOR
OPTIMAL MICROSERVICE GOVERNANCE

2020-021
PROGRESS PRESENTATION 1

Leader: Saranga S.A. G IT17016230
Member 2: De Silva N. IT17006880
Member 3: L.S. Jayasinghe IT17012966
Member 4: M.V. Lakshitha IT17410250
Supervisor

Dr. Dharshana Kasthurirathna

Constant monitoring of metrics through
APM tools

Difficult to understand why a
problem occurs even though there is
knowledge that a problem has
occurred

PROBLEMS

Have to make use of multiple monitoring
sources to make effective decisions (i.e.
disjoint monitoring solutions)

(I[P

® In deploying microservices through Kubernetes, there is
no efficient and effective way for developers to

IN SHORT, THE RESEARCH evaluate and monitor the effectiveness and viability of

PROBLEM THAT OUR a microservice deployment and identify possible
RESEARCH AIMS TO FULFIL

CAN SIMPLY BE DESCRIBED
AS FOLLOWS solutions that currently available.

performance bottlenecks through the disjoint monitoring

®* Hence, developers are not able to optimize their
deployments such that they can make the optimal use of

their deployed microservices in the cluster.

To model a network science-based
approach to govern microservice
deployments through evaluation
and analysis of metrics gathered,
and ultimately produce a proposed
model which aids to optimize

microservice deployments.

MAIN
OBJECTIVE

PROPOSED
SOLUTION

Database

Qutput
CSV generated
from Mode
server
containing
required data
(resource utilization
history
[link weight history)
for given time period

Kubernetes Cluster

Istio

Node
Server

[Kiali Syj;i!m Frometheue}—-i-l Grafana]
L j K)

YAML files

Apply

on cluster

] > Load Prediction and

Centrality Analysis

Predicted link weights, resource
utilization and centrality measures

g Dependency map \

Resilience Evaluation
through Chaos Toolkit

Optimization
algorithm
> ¢

Deploym

T Dashboard

nt yaml

IT1/7016230

® Target problem —

® Current marketplace does not contain a way to monitor and query all the metrics
regarding the network and the hardware utilization, get an idea about the whole

microservice architecture and take the dependency between each and every microservice

into consideration.

® Proposed solution —

® To develop a system which can query necessary metrics in regard to network and
hardware utilization of a cluster and to obtain an holistic idea about the quantified

dependency between microservices

CURRENT PROGRESS - 1T17016230 (70%)

® Creation and configuration of a Kubernetes cluster on AKS.

®* Deployment of a sample microservice system

® Installation and configuration of Istio in the cluster and enable auto injection.
® Installation of Prometheus and Kiali and configuration to query metrics.

® Port forwarding of services to assign static ports.

NEXT EXPECTED PROGRESS (100%
COMPLETION) - IT17016230

®* Development of a server and a database to provide metrices of the cluster to

other team members.
®* A backend to generate csv files on demand.
®* A backend to generate YAML files according to the purposed optimal plan

®* Package everything to a docker container to distribute the final product

IT17006880

®* Target problem — The use of localized rule-based autoscaling technologies
used in microservice deployment which fail to capture a globalized

perspective on the effect of autoscaling decisions

® Proposed solution — Usage of a combination of resource utilization prediction
and prediction of load based metrics to facilitate an improved autoscaling

policy which captures a holistic perspective on the effect of autoscaling.

LOAD PREDICTION AND CENTRALITY ANALYSIS COMPONENT - IT17006880

Historical pod CPU Inter microservice-link
utilization values weight from co-
retrieved from database dependency network

Load Prediction and Centrality

» Prediction of CPU utilization values

» Prediction of inter-microservice link
weight

+ Calculation of centrality measures

« Predicted utilization
values

» Predicted load-based
weights

» Centrality measures

!

To optimization algorithm

CURRENT PROGRESS - IT17006880 (70%)

® Evaluation of various time series prediction models for resource utilization

prediction and load-based inter-microservice link weight

® Selection of the optimal prediction model from the evaluated prediction

models and implementation using selected prediction model

® Implemented methodology for calculation of centrality measures from co-

dependency network

® Implementation of initial code scripts for load-based link weight prediction

Model
ARIMA

HOLT Winters

Auto ML (1 step previous)

XGBOOST (1 step previous)

LSTM Univariate (1 step previous)

LSTM Multivariate (12 steps previous)

MAPE/RMSE
MAPE 20.44%
RMSE 3.40

MAPE 5.76%
RMSE 0.346

MAPE 8.13%
RMSE 1.334

MAPE 6.88 %
RMSE 1.194

MAPE 1.53%
RMSE 0.109

MAPE 3.86%
RMSE 0.276

175

5.0

75

50

25

—— ftrue
- prediction

0 100 200

Auto ML - TPOT

Mean Absolute Percentage Error: 20.44%

400

500

10 1

—— model
— actual

————e___

T T T T T T
2015-01-04 2015-01-05 2015-01-06 2015-01-07 2015-01-08 2015-01-09

// ARIMA

T
2015-01-10

T
2015-01-11

T
2015-01-12

Utilization %

CPU utilization

Actual
Prediction
5
4.5
4
3.5
08:00 10:00 12:00 14:00 00:00
Jan 10, 2015 Jan 11, 2015
Holt Winters
25 ==
— oSt
200
175
150
12s
10,0
75
50
25
250 300 30 400

150

200

XG Boost

|

——

Time Step

LSTM Univariate Model

NEXT EXPECTED PROGRESS (100%
COMPLETION) - IT17006880

® Integrate with co-dependency map and the related components

®* Add necessary conversion functions to convert data from metric APls to a csv format to

be stored in the database solutions

® Integrate with database solution to retrieve historical data for time series prediction

®* Usage of actual values utilization and load-based weight from the developed
APls

IT17012966

*Target problem — Increase performance and availability in microservice

application.

*Proposed solution — Optimal placement for microservices

NSGA I

Objective B

=

B & 8 8 3 B

Objective &

CHROMOSOME DESIGN

Service A 0 2 2
Service B 3 o) 1
Service C 1 3 4
Service D 1 1 0

4

Deployment matrix
[OI2I2I3IOI.I I.I I3l4'llI I.I IO]

METHODOLOGY

Predicted

Dependency Map

Replication
Number
Of Each Service

HPA Algorithm

A

Predicted
Resource Metrics

NSGA I

Initial Population

.

Check Constraint

A

.

Calculate Fitness

.

Mon Dominate Sorting

.

Calculate Crowding
Distance

.

Parent Selection

.

Crossover

.

Mutation

ax Generafion
Reached?

Y

Solution Selection |

Node Latency
Map

Cluster
Resource Details

Solutions

PERFORMANCE FITNESS

i=each link in pod level

n=number of link

m= number of link in app level
W=request weight of a link in app level
L=latency of a link

Aj=chh link average latency in app level

AR Bi=t Li
J n

TL

j=m
=t WJ* AJ'

P~=1/TL

Al

-

~
-y gy e @

B1

B2

I ™

-~
- -

AVAILABILITY FITNESS

1.0
e ®* When x=0,y~=0
®* When x=1,y~=1
= ® vy never exceed 1.
- *A; =R; * generalisedLogisticFunction(S"/ R;)

* TA=YIZT4; —

.00 generalisedLogisticFunction(1) = Y.:=" R;

CURRENT PROGRESS - IT17012966 (60%)

*NSGA I
*Performance fitness
*Availability fitness
*Separate the solution

*AP| server

DEMO

https: / /mysliit-my.sharepoint.com/:v: /g /personal /it17016230 my sliit Ik /EYY-
6nHplwxPty46J42tOu0BVkndS7UIJBRRSS2TVNHE|Q2e=xDJ258B

https://mysliit-my.sharepoint.com/:v:/g/personal/it17016230_my_sliit_lk/EYY-6nHpLwxPty46J42tOu0BVkndS7UlJBRRS52TVNHEjQ?e=xDJ25B

NEXT EXPECTED PROGRESS (100%
COMPLETION) - 1T17012966

® Algorithm to retrieve required instances for each microservice
® Testing functionalities

® Put algorithm in to the scheduler.

® Connect algorithm with other component

® QOutputs warnings

®* Ul Creation

1IT17410250

®* Target problem — Lack of focus on resiliency measures when considering the

microservice deployment and governance

® Proposed solution — perform resiliency evaluations and exploit the results on

creating a deployment plan for an optimal microservice governance

Co-dependancy
network

‘ Kubernetes cluster

R ES I LI E N CY | Resiliency Evaluation
EVALUATION peroming cracs exparmmens
COMPONENT

¥

COptimization
algorithm

CURRENT PROGRESS - IT17410250 (50%)

® Identifying the impact of resiliency measures on microservice governance.
® Performing chaos experiments on Kubernetes cluster.

® Initial implementation of dashboard

"title": "Terminate-pods to examine the behaviour”,
"description”: "r,
"tags": [
"tutorial”,
"filesystem”
I,
"steady-state-hypothesis™: {
"title": "all-our-microservices-should-be-healthy",
"probes”: [
{

"type": "probe”,

"name"”: “service-is-unavailable™,

;; tolerance™: [
SAMPLE
503
15

SCRIPT OF 1 rovdrts (|
TERMINATING 2 |
A POD R

"name"”: "terminate-pod”,
"type": "action",
"provider": {
"type": "python",
"module™: "chaosk8s.pod.actions",
"func": "terminate pods”,
: f

“true"

"url": "http://52.188.218.236:80/productpage"

SAMPLE EXPERIMENT FOR SIMPLE PYTHON SERVICE

“title": "Does our service tolerate the loss of its exchange file?",
"description”: "Our service reads data from an exchange file, can it support that file disappearing?”,
"tags": [
“tutorial®,
“filesysten"
ls
“steady-state-hypothesis”: {
"title": "The exchange file must exist",
"probes”: [(chaostk) Lucky@D JARHE: ersonal$ chaos run newexperiment.json
{ i i ;
S Validating the experiment's syntax
e": "probe : :
T Experiment looks valid
name"; “service-is-unavailable", ¢ : : ; ;
"tolerance”; [Running experiment: Does our service tolerate the loss of its exchange file?

200, Steady state hypothesis: all-our-microservices-should-be-healthy
563 Probe: service-is-unavailable
Lo Steady state hypothesis is met!
“provider": { ; ;
et "http" Action: terminate-pod
ype™: “http®, ; : .
"url": "http://52.188.218.236:80/productpage” Steady state hypothesis: all-our-microservices-should-be-healthy
Probe: service-is-unavailable
Steady state hypothesis is met!
_] Let's rollback...
oo [No declared rollbacks, let's move on.

(Experiment ended with status: completed

"name": "move-exchange-file",

"type": "action",

"provider”: {
"type": "
"module”
"func": "rename",
"arguments": {

1

python",

src": "./exchange.dat",
"dst": "./exchange.dat.0ld"

SAMPLE REPORT

Uy Result

Does our service tolerate the loss of its exchange file?

Our service reads data from an exchange file, can it support that file disappearing? The experiment was conducted on Wed, 24 Jan 2018 13:25:55 GMT and lasted roughly 0 seconds.
Status failed @ .

Tagged tutorial, filesystem Action - move-exchange-file

Executed Fromb2d6b69a2f14

Platform Linux-4.4.0-66-generic-x86_64-with-Ubuntu-16.04-xenial

Started Wed, 24 Jan 2018 13:25:55 GMT Status succeeded

Completed Wed, 24 Jan 2018 13:25:55 GMT BackgroundFalse

SEC U Started Wed, 24 Jan 2018 13:25:55 GMT
Experiment Ended Wed, 24 Jan 2018 13:25:55 GMT

Duration 0 seconds
The experiment was made of 1 actions, to vary conditions in your system, and 0 probes, to collect objective data from your system during the experiment.

Steady State Hypothesis The action provider that was executed:
The steady state hypothesis this experiment tried was “The exchange file must exist". Type python
It was verified with the following probes: Module os

Probe Tolerance Function rename

service-is-unavailable[200, 503] Arguments{‘dst’: ‘./exchange.dat.old’, ‘src’: ‘./exchange.dat’}

NEXT EXPECTED PROGRESS (100%
COMPLETION) - 1T17410250

®* Writing a set of chaos experiments on kubernetes cluster

®* Generating necessary data from resiliency evalution to use in optimization

algorithm

®* Completing implementation of the dashboard

