

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

Saranga S.A.G

De Silva N

LS Jayasinghe

M.V. Lakshitha

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

A NETWORK SCIENCE BASED APPROACH FOR

OPTIMAL MICROSERVICE GOVERNANCE

2020-021

Project Proposal Report

B.Sc. (Hons) in Information Technology Specializing in Software

Engineering

Department of Software Engineering

Sri Lanka Institute of Information Technology

Sri Lanka

February 2020

i

Declaration

ii

Abstract

Microservices have become one of the most popular development architectures for many

software applications developed today, mainly due to its efficient and effective way to

decompose a large and complex system into their functional components and implement a

loosely coupled, self-contained system which supports scalability and performance. As a result

of this, many organizations deploy their application embracing microservice architecture and

make use of platforms such as Kubernetes to ensure the successful deployment of their

application in production.

Nevertheless, even with the use of microservice deployment tools and platforms such as

Kubernetes, a common issue that many developers come across, is an effective approach to

evaluate and monitor their effectiveness and viability of their microservice deployment and

identify performance bottlenecks. This isuue is especially an important factor to be considered

in the case when there are a vast number of interconnected microservices in an application.

This research carried out aims to find an effective approach to the above-identified problem

through developing a model which will help and provide aid to evaluate, monitor, maintain

and oversee microservice deployments through the use of several techniques which include

improvement of efficiency through metric analysis gathered based on identified dependency

measurements, effective autoscaling through load prediction, a microservice monitoring

solution by providing a Business Intelligence dashboard as well as providing solutions to come

up with an optimal deployment strategy for the microservice cluster.

Keywords: Auto-scaling, Chaos Engineering, Container, Docker, Kubernetes, Machine

Learning, Microservices, Time Series

iii

Table of Contents

Declaration... i

Abstract ..ii

Table of Contents ... iii

List of Figures .. v

List of Tables .. vi

List of Abbreviations .. vii

1.0 INTRODUCTION .. 1

1.1 Background and Literature .. 4

1.2 Research Gap ... 7

1.3 Research Problem .. 9

2.0 OBJECTIVES .. 11

2.1 Main Objective ... 11

2.2 Specific Objectives ... 11

3.0 METHODOLOGY .. 12

3.1 Requirement Gathering ... 12

3.1.1 Past Research Analysis ... 12

3.1.2 Identifying Existing Systems .. 12

3.2 Feasibility Study ... 13

3.2.1 Technical Feasibility ... 13

3.2.2 Schedule Feasibility .. 14

3.2.3 Economic Feasibility ... 14

3.3 Requirement Analysis .. 15

3.4 System Analysis .. 16

3.4.1 Software Solution .. 16

3.5 System Development and Implementation .. 18

3.5.1 Building the Dependency Network .. 20

3.5.2 Building the Load Prediction Component .. 21

3.5.3 Building the Resiliency Evaluation System... 22

3.5.4 Building the Final Optimization Algorithm ... 23

3.6 Project Requirements .. 24

3.6.1 Functional Requirements ... 24

https://sliit980.sharepoint.com/sites/CDAP-2020/Shared%20Documents/Documentation/ProjectProposal_2020-021.docx#_Toc33558581

iv

3.6.2 Non-Functional Requirements ... 24

3.7 Testing ... 25

3.8 Time Line .. 26

4.0 PERSONNEL AND FACILITIES ... 27

5.0 COMMERCIALIZATION ... 31

6.0 BUDGET ... 32

7.0 SUMMARY .. 33

8.0 REFERENCES ... 34

v

List of Figures

Figure 1.1 Kubernetes Logo ... 3

Figure 1.2 Microservice Technology Timeline .. 4

Figure 3.1 System Overview Diagram. .. 16

Figure 3.2 Proposed Methodology ... 18

Figure 3.3 Gantt Chart ... 26

vi

List of Tables

Table 4.1 Personnel and Resources .. 27

Table 6.1 Budget .. 32

vii

List of Abbreviations

Abbreviation Description

AKS Azure Kubernetes Services

APM Application Performance Monitoring

AWS Amazon Web Service

IT Information Technology

SOA Service-Oriented Architecture

TOSCA Topology and Orchestration Specification for Cloud Applications

1

1.0 INTRODUCTION

Microservices have become one of the most popular development architectures for

many software applications developed today. This is mainly because microservices

provide an effective way to develop a software application as a set of interconnected

modular services that can be independently deployed and scaled [1]. Furthermore, due

to benefits such as easy integration and deployment, support for continuous delivery

as well as improved fault isolation, many organizations, including several well-known

organizations such as Amazon, Netflix, and eBay have migrated from their traditional

monolithic architecture and instead embraced microservice architecture [1].

With the widespread use of microservices, a variety of tools and platforms have been

developed in order to deploy microservices efficiently. Among them, containerization

of microservices is the most widely used and preferred approach. Containerization

enables efficient and easy deployment of microservices through enabling developers

and system administrators the ability to package and deploy microservices as container

images through opensource tools such as Docker [2-3].

Furthermore, since all required dependencies, libraries, and all other components

needed for the microservice are packaged up in the container itself, the software is

isolated from its environment, ensuring the performance and the functionality of the

software remain the same regardless of the underlying platform [4]. However, in the

case when there are multiple containers present in a particular application, it becomes

difficult to coordinate, schedule as well as monitor the deployed containers and ensure

service availability [5]. As a result, Kubernetes was introduced in the year 2014 [6] in

order to provide a framework to run such distributed systems more resiliently by

providing effective solutions for load balancing, storage orchestration, automated

rollouts, rollbacks, self-healing mechanisms, etc. [5]. Integrating Kubernetes into an

application’s deployment strategy, therefore, enables an organization to easily deploy,

manage, and handle an application, keeping the inherent benefits of container-based

deployments while ensuring service availability. The existence of this unique

2

characteristic in Kubernetes has therefore resulted in its widespread use in

microservice deployments and the increased popularity which can be seen today.

However, even though the use of deployment tools like Kubernetes, there are still some

issues that need to be addressed, particularly concerning the deployment policies

followed. The primary issue being that deployment tools like Kubernetes perform

deployments without really taking into consideration about the interdependency

among deployed microservices. Although this modular structure is what makes the

microservices scalable, the downside is that there is no guarantee that interconnected

services are deployed in the same node or nearby nodes unless configured otherwise.

If those services are deployed far away, then issues such as latency could be a problem.

In addition, there also some issues that exist in the current way in which the

effectiveness of Kubernetes deployments is evaluated with respect to performance.

Currently, the process being used by developers and system administrators uses a wide

array of monitoring tools known as Application Performance Monitoring (APM) tools

in order to gather performance metrics regarding the various resources in the

Kubernetes cluster and get an idea of the performance of their deployed clusters. This

task is usually performed through constant observation of the metrics gathered through

these APM tools. This technique is also used in key tasks such as in the identification,

setting, and configuring of resource limits and thresholds for resource utilization as

well as in the identification of potential performance bottlenecks. Nevertheless, this

approach of constant monitoring and observation in order to set up parameters and

thresholds related to performance optimization is quite inefficient due to the constant

amount of observation required.

 Furthermore, even though these APM tools help in the identification of potential

problems in a deployment, they are not able to provide an in-depth insight as to why

the problem occurred. Therefore, it is quite clear that developers and system

administrators are not able to easily obtain a holistic view of the performance of their

deployed cluster and get a clear understanding regarding the current and expected

performance of their deployments.

3

This research aims to provide a solution to this problem by taking the initial step

by aiming to develop a model that takes into consideration a metric analysis-

based approach to optimize and govern microservice deployments in Kubernetes

through evaluation of identified dependency measurements. The proposed model will

ultimately aid developers and system administrators to effectively govern their

microservice deployments by providing a holistic view, enabling them to configure

their deployments with minimal time and effort.

Figure 1.1: Kubernetes Logo

4

1.1 Background and Literature

The term “microservices” was first introduced in 2011 [7,8]. It was considered as a

specialized implementation of Service Oriented Architecture (SOA) and introduced to

denote the common architectural approach of decomposing applications into smaller

self-contained services and, in turn, develop loosely coupled services. Later on, it was

widely adopted by many companies such as Amazon, Netflix, LinkedIn, and

SoundCloud as a result of the traditional monolithic applications being hard to

develop, maintain and scale [9].

Over the years, with the increased popularity of microservice architecture, new tools

and technologies were introduced to support microservice-based technologies, as

shown in Figure1.2. According to the authors of [8], the development of microservice-

based technologies came in the form of ten “waves” starting from lightweight

container technologies like Docker and LXC and leading up to the last “wave” of

service mesh technologies such as Linkerd and Istio.

Figure 1.2: Microservice technologies timeline [8]

5

As evident from Figure 1.2 given above, with the introduction of various technologies

supporting microservices throughout the years, microservices became an increasingly

popular development architecture mainly due to several advantages it possesses when

compared to the traditional monolithic applications developed. Key advantages

include improved scalability, maintainability, delivery, and greater performance.

Furthermore, since microservices are developed in a loosely coupled manner, it has

enabled developers to develop, deploy, version and scale applications independently,

bringing in benefits such as faster delivery, greater performance, and greater autonomy

[8].

Another key difference when between microservice and monolith architecture is when

it comes to how they are governed. This term is known as “Microservices Governance”

concerning a microservice architecture, and it can be simply defined as a methodology

or approach that establishes policies, standards, and best practices for the adoption of

microservices to enable an enterprise agile IT environment. [10]. Governance in

monoliths is centralized, and decisions are made “top-down” [10], whereas

governance in microservices embraces a decentralized governance approach. This, in

turn, enables microservices to make use of a polyglot model technology stack in the

development of applications.

However, due to the decentralized approach used in the governance of microservices

more steps should be taken in order to ensure effective governance is maintained since

typical applications require interconnections between a vast number of microservices

where business process workflows are continuously introduced, Therefore, in order to

ensure an effective microservice governance is in place, organizations currently make

use of a variety of tools which facilitate tasks such as monitoring, autoscaling,

configuration management, fault tolerance, etc. as seen in some of the examples

provided in Figure 1.2 above.

Throughout the years, several strategies have been proposed by research a variety of

research publications in order to minimize this issue and optimize performance. These

researches primarily focus on performance modeling strategies as well as improving

6

processes on orchestration platforms such as Kubernetes. In this regard, some of the

key researches that propose relevant models and methodologies are highlighted below.

Research publications such as [11], propose an architectural approach along with its

implementation that federates Kubernetes clusters using a TOSCA-based cloud

orchestration tool, whereas research publications such as [12] proposes a tool named

Terminus to solve the problem of finding the best-suited resources for the microservice

to be deployed, so that the whole application achieves the best performance while

minimizing the resource consumption.

Other key researches include the reference net-based model for pod & container

lifecycle in Kubernetes proposed by the authors of [13] and the generative platform

for benchmarking performance and resilience engineering approaches in microservice

architectures as proposed in [14].This platform comprised of elements such as an

underlying metamodel, generation platform, supporting services for workload

generation, problem injection and monitoring.

However, through analyzing the above research publications described above, it is

quite clear that there is no current solution proposed that takes into consideration an

integrated modeling strategy, and takes into consideration elements such as co-

dependencies present as well resilience and centrality measures among microservices

when developing a holistic orchestration policy for Kubernetes based microservice

deployments, as proposed in this research.

7

1.2 Research Gap

The primary research gap that this research aims at fulfilling is the gap that exists in

current methodologies used in the governance and optimization of microservice

deployments, particularly concerning Kubernetes. A thorough analysis of published

research papers throughout the years has managed to highlight some of the issues that

are present in current microservice governance methodologies and thereby enabled in

the identification of the research gap.

The initial inspiration for the identification of this research problem and also the

objectives of this research can be found in [15]. This publication clearly describes

some of the key challenges faced in the deployment of microservices and the need for

APM tools, especially those deployed in containers to include additional measures to

monitor microservices such that they could be used as input for resilience mechanisms

and creation of auto-scaling policies. This publication also goes on to highlight the fact

that the shift in use cases for microservice performance modeling, particularly with

respect to design-time performance modeling, has moved on from the traditional use

cases such as capacity planning to newer emerging areas such as reliability and

resilience engineering. Furthermore, the need for new modeling strategies that capture

the recent advances in deployment technology such as Kubernetes, and also some of

the key challenges that have to be faced, and the fact that making use of techniques

from machine learning could solve some of these challenges, is also clearly highlighted

in this publication.

Research publications such as [16] state the need for the development of techniques

for accurately modeling, representing, and querying configurations of microservices

and data center resources in a container and hypervisor-based technology. This

publication states that the inability of monitoring frameworks such as Amazon EC2

and Heapster in Kubernetes to measure microservice-level performance metrics, will

lead to the creation of several new research topics which include the development of

holistic techniques for collecting and integrating monitoring data from microservices

and datacenter resources, and, that users such as administrators or a computer program

8

such as a scheduler could track and understand the impact of runtime uncertainties

(failure, load-balancing, overloading, etc.). on performance without understanding the

whole platform’s complexity.

The publication [8] discusses the evolution of microservice-based technologies

throughout the years and some of the challenges that are yet to be addressed in the

future. Among the challenges stated that need to be addressed is the challenge faced

in the resource monitoring and management process currently in use. Issues such as

the overloading of monitoring events, which hinders effective decision making and

management decisions, as well as making use of past actions and events to better

inform resource management decisions, are clearly highlighted in this regard.

Based on the information derived from research publications mentioned above, it is

clear that new modeling strategies for microservice governance should be explored

which should incorporate a more effective and efficient use of monitoring solutions as

well integration with other technologies such as resiliency evaluation and autoscaling

in order to improve upon and develop a more optimized governance model for

microservice deployments.

9

1.3 Research Problem

Even though Kubernetes is quite successful and widely used nowadays, it is not

without its own unique challenges. This is especially true with regard to some of the

current processes in the governance of microservices through Kubernetes, particularly

considering processes involving in monitoring, resource utilization, and performance

optimization.

Currently, the only way in which developers and system administrators can effectively

evaluate the effectiveness of their Kubernetes deployments with respect to

performance is through the use of a wide variety of monitoring solutions provided via

Application Performance Management (APM) tools. This process is quite challenging

due to the fact that developers and system administrators have to focus on a variety of

factors such as resiliency, security, auto-scaling, etc. which are obtained from these

vast arrays of monitoring sources before deciding the optimal deployment

configuration for the cluster in order to ensure the optimal performance. Examples of

this could also be seen in processes such as resource utilization as well [17,18].

Furthermore, due to the use of vast arrays of APM tools that are used in these instances,

it is also difficult to identify potential performance bottlenecks and identify the root

cause for these problems, since developers and system administrators are unable to

easily get a holistic view the status of their deployments regarding the expected

performance of the deployed cluster unless they constantly monitor and analyze the

vast amount of metrics obtained by these APM tools [19-21].

Also, with the current trend moving towards cloud-based platforms provided by Azure,

Google, and AWS to perform Kubernetes deployments, which primarily incur a cost

based on resource utilization [22-24], the need for APM tools has become even more

evident. This, in turn, has led developers and system administrators to be more mindful

in maintaining a proper balance between performance and resource utilization.

However, maintaining this balance between performance and resource utilization is

quite a challenging and time-consuming process for developers and system

10

administrators since this process requires constant monitoring of metrics and

finetuning multiple variables and paraments in their deployment configurations such

that the optimal performance criteria are met. [25]

Adding to this set of problems is the difficulty posed in successfully configuring and

integrating these APM tools with the existing tools used by organizations [26].

According to a survey conducted by the Cloud Native Computing Foundation (CNCF)

[27] regarding the challenges users faced in Kubernetes deployments as well as a

survey of 1,300 attendees at the KubeCon CloudNativeCon 2019 [28], monitoring was

stated as one of the top-ranked challenges faced.

Therefore, based on the issues mentioned above, as well as the related research gaps

highlighted in the previous section, it is quite clear that a more suitable solution should

be implemented to enhance the governance of microservice-based deployments. This

solution should make use of a unified model, taking into account the variety of factors

considered in configuring Kubernetes deployments, to help system administrators and

developers to get a holistic view of the status of the current deployment and enable

them to easily govern and configure their deployments with minimal time and effort.

https://platform9.com/blog/six-enterprise-kubernetes-takeaways-from-kubecon-2019-san-diego/

11

2.0 OBJECTIVES

2.1 Main Objective

The main objective is to model a network science-based approach to govern

microservice deployments through evaluation and analysis of metrics gathered and

ultimately come up with a proposed model that aids in optimizing microservice

deployments.

2.2 Specific Objectives

The following are the sub-objectives of conducting this research.

• To increase the efficiency of microservices deployments by applying the

metrics used in network analysis, such as centrality and resilience measures,

and link predictions on identified dependency measurements.

• To develop an improved auto-scaling policy for a deployment, based on load

prediction.

• To develop a business intelligence dashboard to evaluate performance and

monitor microservice deployments.

• To identify key factors that lead to performance reduction in microservice

deployments and come up with an optimal deployment strategy.

12

3.0 METHODOLOGY

3.1 Requirement Gathering

Requirement gathering was mainly performed through performing an extensive

analysis of past research conducted throughout recent years, identification and analysis

of the existing systems, as well as reading through a variety of online resources.

3.1.1 Past Research Analysis

The past research analysis process was mainly performed through reading and

analyzing a wide array of research publications published through recent years. Key

topics of interest included microservice deployment optimization, microservice

performance engineering, microservice governance, centrality evaluation, load

prediction, and forecasting, resource prediction and optimization, resiliency analysis,

and microservice monitoring. During the research analysis process, the primary focus

was given in the identification of the methodology used, tools used, experiments

conducted, as well as the overall findings of the research with respect to performance

optimization in microservices.

3.1.2 Identifying Existing Systems

A thorough analysis was conducted on a variety of existing APM tools as well as other

similar systems, that were available to use with the Kubernetes platform. This process

was mainly done by visiting the various online sources and analyzing the available

documentation and videos published. During this process, the primary focus was given

in identifying the key features and drawbacks that were present in the tools analyzed.

13

3.2 Feasibility Study

3.2.1 Technical Feasibility

3.2.1.1 Knowledge on Kubernetes

In order to develop the proposed optimization model, all members are required to have

basic knowledge of Kubernetes and its relevant components. Members should be able

to perform basic configuration and should have sufficient knowledge and practical

experience on how to deploy microservices through Kubernetes.

3.2.1.2 Knowledge on APM tools

In order to develop the proposed optimization model, all members are required to have

quite an in-depth understanding of the existing APM tools and the features and

drawbacks present. The members should also have sufficient knowledge of

configuring and APM tools selected for this research as well as knowledge on how to

integrate the selected APM tools with the optimization model.

3.2.1.3 Knowledge on Resiliency Evaluation and Chaos Engineering

For the resiliency evaluation system to be developed, a thorough knowledge of “Chaos

Engineering” and knowledge related Chaos Engineering tools are required.

Furthermore, members should have sufficient knowledge of configuring and

integrating the selected Chaos Engineering tool with the optimization model.

14

3.2.1.4 Machine Learning Knowledge

In order to develop the proposed optimization model, all members are required to have

quite basic knowledge of machine learning basics as well as time series analysis.

Members should be aware of the time series prediction models as well as knowledge

on how to integrate the relevant models with machine learning and develop basic

algorithms. Furthermore, members should also have a basic understanding of the

Python programming language and related Python machine learning and time series

libraries.

3.2.2 Schedule Feasibility

The proposed project should be able to be implemented within the scheduled time

period of about five months, with about two months allocated for research, requirement

gathering, and analysis. Finally, the proposed project should be completed within the

end of 7 months, including sufficient testing.

3.2.3 Economic Feasibility

The cost of the proposed project should be as minimal as possible in order for it to be

included and accepted in the existing APM tool market in Kubernetes. This is mainly

due to the fact that most APM tools and solutions offered currently with respect to

Kubernetes are often opensource.

15

3.3 Requirement Analysis

During the requirement analysis phase, key information obtained during the

requirement gathering phase is analyzed. Analyzing the gathered information will

prove to be of utmost importance to the research process, since key information

regarding the potential challenges that may be faced, the potential complexity of tasks

involved, as well as other key information regarding the tools used by other research

teams will be easily identifiable.

Also, since the research carried out a software-based approach, by performing

requirement analysis, key information regarding the schedule, technical and economic

feasibility was realized and helped in aligning research goals such that the research

carried out does not exceed the technical skills of the research members while

maintaining the expected deadlines.

In the research paper analysis, the primary focus will be given to the analysis of the

methodology and tools used, as well as the outcomes of the research conducted. This

helps in improving the decision-making process in the current research by providing

credible evidence that will help in deciding upon the direction in which the current

research should progress by highlighting the research gaps.

Furthermore, analyzing the online resources regarding the available tools will help in

the identification of the existing tools that posses’ similar features to what the current

research aims at implementing and help in identifying the research gap by comparing

the existing feature with those that are proposed. Also, by analyzing tools that could

prove to be of use in the implementation of the current research, a clear idea regarding

the features they possess, and how they could be integrated into the current research

could be identified.

16

3.4 System Analysis

3.4.1 Software Solution

The overview of the proposed system is as follows. Its structure mainly composed of

the following components.

• Dependency network

• Load prediction

• Resiliency evaluation

• Optimization algorithm

Figure 3.1: System Overview Diagram

17

3.4.1.1 Dependency Network

The microservice dependency network is a map that depicts the architecture of the

microservice cluster based on the level of dependency among microservices. The level

of dependency among microservices is calculated by using a selection of APM tools

to retrieve metrics from microservices to determine the level of dependency among the

microservices in order to develop a co-dependency network between the

microservices.

3.4.1.2 Load Prediction Component

This component is responsible for the prediction of the load through analysis of load-

based resource metrics and the evaluation of centrality measures derived from the

predicted loads. This component will primarily make use of statistical and machine

learning techniques utilizing a time series prediction model for the process mentioned

above. This component will thereby enable identification of key microservices within

a cluster and aid in producing an improved autoscaling policy based on the global

importance of a particular microservice.

3.4.1.3 Resiliency Evaluation Component

This component is responsible for the evaluation of resiliency in the microservices

identified using dependency measures created using the dependency network. The

resiliency will be evaluated by performing targeted attacks on the identified

microservices using the Chaos Monkey tool. This component will also enable

identification of key microservices within a cluster based on the evaluated resiliency

measures.

18

3.4.1.4 Optimization Algorithm

This component is responsible for determining the optimal deployment strategy for the

cluster based on inputs from the load prediction and resiliency analysis components

described above. The optimal strategy determined by this optimization algorithm will

then be displayed in the dashboard to the user.

3.5 System Development and Implementation

The implementation process of the proposed model will be performed as per Figure

3.2 given below.

Figure 3.2: Proposed Methodology

O
u
tp

u
t to

 d
ash

b
o
ard

C

o
n
fi

g
u
re

 c
lu

st
er

 b
as

ed
 o

n

g
en

er
at

ed
 d

ep
lo

y
m

en
t

st
ra

te
g
y

Output to dashboard

19

The steps planned to be followed in order to reach the proposed solution are as given

below.

1. Creation of a Kubernetes cluster in which the proposed model could be

implemented and tested.

2. Retrieval and gathering of metrics from the deployed cluster.

3. Generation of a dependency network that depicts the level of dependency

among the deployed microservices.

4. Making use of the dependency level among the deployed microservices

obtained from the previous step, two solutions that would ultimately aid in

optimizing the current deployment will be implemented.

1. A load prediction algorithm will be developed through the analysis of

the metrics in order to determine the centrality of a particular

microservice based on the predicted loads.

2. A system which evaluates and analyses the resiliency of microservices

in the cluster by performing targeted attacks to evaluate the resiliency.

5. Then, all findings from the above two developed components will be fed into

an optimization algorithm which will be used to come up with the optimal

deployment strategy for the cluster.

6. Lastly, the resulting output will be integrated into a dashboard such that the

user will be able to receive potential suggestions which will help to optimize

their current deployment.

20

3.5.1 Building the Dependency Network

The dependency network and the service mesh will be implemented by reading the

logs and metrics for all the nodes and the pods in a Kubernetes cluster. An open-

source independent service mesh called "Istio" will be configured and deployed to the

Kubernetes cluster. Istio will create a proxy on top of every node, and it will be able

to capture the network requests and responses of a particular node.

The whole research will be based on quantifying the dependency between two

microservices. To quantify the dependency, all the network responses and requests

between two microservices will be recorded with the timestamp. Then the quantity of

network traffic can be calculated for a unit of time.

Metrics such as CPU utilization, memory allocation, network usage, and disk

utilization will be needed for the load prediction, and the auto-scaling part of the

research and the metrics mentioned above will be gathered by configuring Prometheus

and Kiali. Then the gathered metrics will be added to the dependency network.

Tools

• Azure CLI

• Kubernetes CLI (Kubectl)

• Docker

• Istio

Programming Languages

• Python

• Node JS

• Spring Boot

• React JS

21

3.5.2 Building the Load Prediction Component

The load prediction component will primarily make use of data obtained from the co-

dependency network in order to perform the prediction process. This data will include

load-based metrics such as CPU utilization, network utilization, as well as other

metrics used in the development of the co-dependency network. The obtained metric

data will then be recorded and stored in a temporary database within the cluster for

analysis. After proper data cleaning processes are performed, the data will then be

converted into a time series model, which will be sent to the prediction model for the

time series forecasting process. This process will be performed using the Python

programming language as well as using supplementary tools such as Jupyter Notebook

and Anaconda. Open-source libraries and tools such as TensorFlow are also expected

to be used to facilitate the prediction process. Using the predicted load derived from

the forecasted time series model, centrality measures will be evaluated from the

microservices based on the predicted loads. Here too, libraries such as NetworkX will

be used for the centrality evaluation process.

Tools

• Anaconda

• Jupyter Notebook

Programming Languages

• Python

Key Python libraries expected to be used

• Numpy

• Scikit-learn

• TensorFlow

• Pandas

• Matplotlib

• NetworkX

22

3.5.3 Building the Resiliency Evaluation System

The resiliency evaluation component will be done using the concept of Chaos

Engineering with the help of tools such as Chaos Monkey, Failure Injection Testing,

Latency Monkey, and Doctor Monkey. With the use of the dependency network,

main nodes are identified, and targeted attacks are performed on these nodes to

evaluate how it will affect other nodes and functions of the system. Data collected

will contain performance metrics such as CPU utilization, IO events, Disk, Memory,

and business metrics such as orders per second or lower-level metrics like response

latency and response error rate.

From the metrics obtained by the evaluation, the most important metrics will be

selected and prioritized. The final evaluation details will be forwarded as an input to

the final optimization algorithm to create an optimal deployment strategy.

Tools

• Chaos Monkey

• Doctor Monkey

Programming Languages

• Python

• NodeJS

Libraries expected to be used

• Chaos Toolkit

• Spinnaker

23

3.5.4 Building the Final Optimization Algorithm

The optimization algorithm will be used for generating a better microservices

deployment strategy based on load prediction-based centrality and resiliency

measures. This algorithm ensures that microservice deployment possesses optimal

performance and availability. To implement this algorithm, a genetic algorithm will

be used instead of the typical brute force optimization methods used. In this scenario,

the fitness function is considered as the most important part of the genetic algorithm

since it defines how to score a given deployment plan. The scored method is mainly

based on the load prediction measures and network latency. Also, it is concerned about

node resource power, microservices resource consumption, and resiliency of the

microservice architecture. For example, if most communicated pairs of microservices

deployed in nearby nodes, that is a point that gains a higher score. Among the variety

of random deployment plans, the algorithm will select the highest scored plan.

However, the genetic algorithm does not guarantee the generation of the best plan, but

it always generates a better plan. After selecting the better strategy plan, the system

can perform the automated deployment. To obtain node resource power and

microservice resource consumption, Istio will be used. Python will be used for

implementing the algorithm whereas libraries such as NetworkX be used for dealing

with the node latency map. Python GA library will be used to perform the genetic

algorithm part.

Tools

• Istio

Programming Languages

• Python

Key Python libraries expected to be used

• NetworkX

• GA

24

3.6 Project Requirements

3.6.1 Functional Requirements

The functional requirements for the proposed model are as follows:

• Users should be able to view the optimal deployment strategy for a given

cluster.

• Users should be able to view possible deployment suggestions in order to

optimize the deployment.

• The system should analyze the resiliency of the identified microservices in

the cluster.

• Load prediction should be performed on the identified microservices.

• The auto scaler should be configured to proactively auto-scale based on

predicted load.

• The optimal deployment strategy for a particular deployment should be

determined using the predicted load, evaluated centrality measures and

resiliency evaluation.

3.6.2 Non-Functional Requirements

The following are the non-functional requirements that are primarily focused during

the development of the proposed model.

• Usability

• Reliability

• Availability

• Interoperability

• Performance

25

3.7 Testing

The testing phase is a key phase in the development process of this research, and it is

expected to be conducted throughout the implementation process of this research

project. Initial testing will be performed on a component level basis in which each

component will be tested individually, and once a specific component has been

developed, the testing process will begin. During component-level testing, key features

and functions developed will be evaluated to ensure they are functioning as required

Once all components have been completely developed, integration testing will be

performed, and the final developed model will be evaluated to ensure the overall

performance is improved in the microservice cluster through the use of the proposed

governance model. Here, key factors such as latency and its related measures will be

used to evaluate the performance of the proposed governance model.

For this research, a test-bed of consisting of about 50 microservices is expected to be

deployed in a Kubernetes cluster. Furthermore, a load-generation tool is expected to

be used to generate sufficient metrics in order to develop the co-dependency network.

These captured metrics will then be used in the load prediction and resiliency

evaluation components for further analysis.

26

3.8 Time Line

The proposed timeline for the project is as follows.

Figure 3.3: Gantt Chart

27

4.0 PERSONNEL AND FACILITIES

Name Key Tasks

Saranga S.A.G. • Setting up and configuring the initial

Kubernetes microservice cluster for metric

analysis.

• Setting up and configuring the relevant

tools such as Prometheus and Istio etc. in

order to retrieve the required metrics.

• Identify and retrieve the required metrics

from the various metrics analyzing tools.

• Analyze the retrieve metrics such that it

could be used to determine the

interdependencies between the deployed

microservices.

• Development of custom metrics using the

retrieved metrics which can be used to

represent the interdependency between

microservices.

• Development of a solution in order to

display the interdependencies gathered

using metrics in order to display as a

dependency network.

28

• Performing configuration of the auto-

scaling of the cluster based on the load-

prediction algorithm.

De Silva N. • Retrieval of the necessary metric data from

pods in the cluster in order to perform the

load prediction based on the developed

dependency network.

• Development of solution in order to store

the gathered metric data for time series

analysis.

• Preparing and manipulating the extracted

data in order to establish a time series.

(data cleaning)

• Development of a time series data set

based on the historical metric data

retrieved, such that future loads could be

predicted.

• Selection of the most appropriate time

series forecasting model for load

prediction.

• Development of the algorithm with the

help of Machine Learning, for the time

series using the selected model in order to

predict future loads and evaluation of

centrality measures.

29

• Finetune the developed model in order to

get the most accurate prediction.

LS Jayasinghe • Retrieval of the analyzed outputs from the

load prediction, dependency analysis map,

as well as resiliency evaluation process.

• Formatting and data manipulation of the

data received from the above-mentioned

output processes, in order to be fed as

inputs to the optimization algorithm.

• Development of final optimization

algorithm making use of Machine

Learning, which takes in inputs from the

load prediction, dependency analysis map,

and resiliency evaluation process, and

proposes the suggested optimal

deployment strategy.

• Integrate with the UI dashboard in order to

display the optimal deployment strategy to

the user.

• Evaluate the effect of the developed

optimization algorithm with respect to the

performance of the microservice cluster.

30

Lakshitha M.V. • Using the dependency network, perform

the development of a system that analyses

the resiliency of the cluster using “Chaos

Engineering” tools such as “Chaos

Monkey.”

• Identification of the microservices which

show low resilience from the above-

mentioned process.

• Evaluating the deployed microservice

cluster and coming up with proposed

suitable measures in order to improve the

resiliency of the deployed microservice

cluster.

• Evaluating the effect of the proposed

resiliency measures with respect to the

performance of the microservice cluster.

• Development of the UI dashboard, which

displays the final findings of the

optimization process to the user and the

displaying of the optimal deployment

strategy to the user.

Table 4.1: Personnel and Resources

31

5.0 COMMERCIALIZATION

The commercialization of this research project is mainly considered through the

development of a tool through the use of the proposed model. The developed tool will

be developed as a Business Intelligence Dashboard which makes use of the proposed

model to provide developers and system administrators an easy and efficient way in

which to optimize their Kubernetes deployment by aiming to provide the following

benefits.

• Visualize the level of inter-dependency among deployed microservices.

• Receive suggestions in potential ways to optimize the performance and

configure current deployments and automatically perform deployments based

on the suggestions.

• Provide an overview of the resiliency of the deployed microservices.

• Automatically configure and auto-scale Kubernetes autoscaling tools based on

predicted load and centrality measures.

The developed Business Intelligence Dashboard will allow users to access all the

above-mentioned features and provide a holistic view of their deployments. Hence,

this tool will be mainly targeted to be marketed as an APM tool for Kubernetes

deployments for system administrators and developers. Due to the wide variety of

APM tools currently available in the market which are mostly free and opensource, the

initial plan is to develop this dashboard into an opensource tool in order to enter the

current market space effectively. However, throughout the years, a freemium based

marketing strategy will be adopted with the inclusion of additional features.

32

6.0 BUDGET

The main aspect of this research is primarily focused on the development of an

optimization model that aids in the deployment of microservices through Kubernetes,

and hence it is primarily a software-based solution with no inclusion of external

hardware.

However, there will be some costs expected to be incurred, as given in the table below.

Internet use and web hosting 15500 LKR

Publication costs 6500 LKR

Stationary 5500 LKR

TOTAL 27500 LKR

Table 6.1: Budget

Note: Azure Student subscription with $100 of free credit for 12 months will be used

for this project. Therefore, resource creation for the VMs needed for testing and

creation of the Kubernetes cluster to be used for implementation purposes could be

obtained without any additional cost and hence is not included in the budget.

33

7.0 SUMMARY

The primary objective of this proposed research is to develop a model that aims to

improve microservice governance in Kubernetes deployments through a network

science-based approach.

The model is developed primarily through a microservice dependency network based

on metric analysis, and performing load prediction, and resiliency evaluation on the

microservices identified using the dependency network. Finally, the outputs of these

components will be fed into an optimization algorithm and display an optimal

deployment strategy to the user.

The proposed model will ultimately be able to provide developers and system

administrators an overview of their current deployment configurations with respect to

performance and aid in governing their microservice deployments such that the

optimal performance is achieved.

34

References

[1]"Benefits of Microservices Architecture Implementation - DZone

Microservices", dzone.com, 2020. [Online]. Available:

https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur.

[Accessed: 15-Feb-2020].

[2]"Microservices in Practice: From Architecture to Deployment - DZone

Microservices", dzone.com, 2020. [Online]. Available:

https://dzone.com/articles/microservices-in-practice-1. [Accessed: 15-Feb-2020].

[3]"What is a Container? | Docker", Docker, 2020. [Online]. Available:

https://www.docker.com/resources/what-container. [Accessed: 15-Feb-2020].

[4]"What is Docker?", Opensource.com, 2020. [Online]. Available:

https://opensource.com/resources/what-docker. [Accessed: 15-Feb-2020].

[5]"What is Kubernetes", Kubernetes.io, 2020. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed: 15-

Feb-2020].

[6]"Kubernetes", En.wikipedia.org, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Kubernetes. [Accessed: 15-Feb-2020].

[7] “Microservices,” Wikipedia, 13-Feb-2020. [Online]. Available:

https://en.wikipedia.org/wiki/Microservices [Accessed: 15-Feb-2020].

[8] Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., & Tilkov, S.

(2018). Microservices: The Journey So Far and Challenges Ahead. IEEE Software.

[9] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges When Moving from

Monolith to Microservice Architecture,” Current Trends in Web Engineering Lecture

Notes in Computer Science, pp. 32–47, 2018.

[10] G. K. Behara, “Microservices Governance: A Detailed Guide,” Enterprise

Architecture Management, 31-Jan-2019. [Online]. Available:

https://www.leanix.net/en/blog/microservices-governance. [Accessed: 15-Feb-2020].

https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://dzone.com/articles/microservices-in-practice-1
https://www.docker.com/resources/what-container
https://opensource.com/resources/what-docker
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Microservices
https://www.leanix.net/en/blog/microservices-governance

35

[11] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, “TOSCA-Based and

Federation-Aware Cloud Orchestration for Kubernetes Container Platform,” Applied

Sciences, vol. 9, no. 1, p. 191, Jul. 2019.

[12] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance Modeling for Cloud

Microservice Applications,” Proceedings of the 2019 ACM/SPEC International

Conference on Performance Engineering - ICPE 19, 2019.

[13] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui, “Modelling performance

& resource management in Kubernetes,” Proceedings of the 9th International

Conference on Utility and Cloud Computing - UCC 16, 2016.

[14] T. F. Düllmann and A. V. Hoorn, “Model-driven Generation of Microservice

Architectures for Benchmarking Performance and Resilience Engineering

Approaches,” Proceedings of the 8th ACM/SPEC on International Conference on

Performance Engineering Companion - ICPE 17 Companion, 2017.

[15] Heinrich, Robert & van Hoorn, André & Knoche, Holger & Li, Fei &

Lwakatare, Lucy Ellen & Pahl, Claus & Schulte, Stefan & Wettinger, Johannes.

(2017). “Performance Engineering for Microservices: Research Challenges and

Directions”.

[16] Fazio, Maria & Celesti, Antonio & Ranjan, R. & Liu, Chang & Chen, Lydia &

Villari, Massimo. (2016). “Open Issues in Scheduling Microservices in the Cloud.

IEEE Cloud Computing”.

[17]"DataDog/the-monitor", GitHub, 2020. [Online]. Available:

https://github.com/DataDog/themonitor/blob/master/kubernetes/monitoring-

kubernetes-performance-metrics.md. [Accessed: 15-Feb-2020].

[18]"Resource Usage Monitoring in Kubernetes", Kubernetes.io, 2020. [Online].

Available: https://kubernetes.io/blog/2015/05/resource-usage-monitoring-

kubernetes/. [Accessed: 15-Feb-2020].

[19] D. Snyder, "How to Overcome Kubernetes Monitoring Challenges", OverOps

Blog, 2020. [Online]. Available: https://blog.overops.com/how-to-overcome-

monitoring-challenges-with-kubernetes/. [Accessed: 15-Feb-2020].

https://github.com/DataDog/themonitor/blob/master/kubernetes/monitoring-kubernetes-performance-metrics.md
https://github.com/DataDog/themonitor/blob/master/kubernetes/monitoring-kubernetes-performance-metrics.md
https://kubernetes.io/blog/2015/05/resource-usage-monitoring-kubernetes/
https://kubernetes.io/blog/2015/05/resource-usage-monitoring-kubernetes/
https://blog.overops.com/how-to-overcome-monitoring-challenges-with-kubernetes/
https://blog.overops.com/how-to-overcome-monitoring-challenges-with-kubernetes/

36

[20]"Monitoring Kubernetes (Part 1): The Challenges and Data Sources - DZone

Performance", dzone.com, 2020. [Online]. Available:

https://dzone.com/articles/monitoring-kubernetes-part-1-the-challenges-and-da.

[Accessed: 15-Feb-2020].

[21]"Challenges of Monitoring and Troubleshooting in Kubernetes Environments |

Sumo Logic", Sumo Logic, 2020. [Online]. Available:

https://www.sumologic.com/blog/troubleshooting-kubernetes. [Accessed: 15-Feb-

2020].

[22]"Pricing - Container Service | Microsoft Azure", Azure.microsoft.com, 2020.

[Online]. Available: https://azure.microsoft.com/en-us/pricing/details/kubernetes-

service/. [Accessed: 15-Feb-2020].

[23]"Amazon EKS Pricing - Managed Kubernetes Service", Amazon Web Services,

Inc., 2020. [Online]. Available: https://aws.amazon.com/eks/pricing/. [Accessed: 15-

Feb-2020].

[24]"Pricing | Kubernetes Engine Documentation | Google Cloud", Google Cloud,

2020. [Online]. Available: https://cloud.google.com/kubernetes-engine/pricing.

[Accessed: 15-Feb-2020].

[25]"Which One Should You Prioritize? Kubernetes Performance, Cluster Utilization,

or Cost Optimization?", Medium, 2020. [Online]. Available:

https://medium.com/@Mohamed.ahmed/which-one-should-you-prioritize-

kubernetes-performance-cluster-utilization-or-cost-optimization-21469263b6a7 .

[Accessed: 15-Feb-2020].

[26]"Kubernetes: The Challenge of Deploying & Maintaining", Techolution, 2020.

[Online]. Available: https://techolution.com/kubernetes-challenges/. [Accessed: 15-

Feb-2020].

[27] L. Hecht, L. Hecht, and L. Hecht, "The Top Challenges Kubernetes Users Face

with Deployment - The New Stack", The New Stack, 2020. [Online]. Available:

https://thenewstack.io/top-challenges-kubernetes-users-face-deployment/. [Accessed:

15-Feb-2020].

https://dzone.com/articles/monitoring-kubernetes-part-1-the-challenges-and-da
https://www.sumologic.com/blog/troubleshooting-kubernetes
https://azure.microsoft.com/en-us/pricing/details/kubernetes-service/
https://azure.microsoft.com/en-us/pricing/details/kubernetes-service/
https://aws.amazon.com/eks/pricing/
https://cloud.google.com/kubernetes-engine/pricing
https://medium.com/@Mohamed.ahmed/which-one-should-you-prioritize-kubernetes-performance-cluster-utilization-or-cost-optimization-21469263b6a7
https://medium.com/@Mohamed.ahmed/which-one-should-you-prioritize-kubernetes-performance-cluster-utilization-or-cost-optimization-21469263b6a7
https://techolution.com/kubernetes-challenges/
https://thenewstack.io/top-challenges-kubernetes-users-face-deployment/

37

[28] M. Vizard, "Running Kubernetes at Scale Top 2020 Challenge - Container

Journal", Container Journal, 2020. [Online]. Available:

https://containerjournal.com/topics/container-management/running-kubernetes-at-

scale-top-2020-challenge. [Accessed: 15-Feb-2020].

https://containerjournal.com/topics/container-management/running-kubernetes-at-scale-top-2020-challenge
https://containerjournal.com/topics/container-management/running-kubernetes-at-scale-top-2020-challenge

38

http://arduino.cc/en/uploads/Main/ArduinoUnoBack.jpg

