
A NETWORK SCIENCE BASED APPROACH
FOR OPTIMAL MICROSERVICE

GOVERNANCE

2020-021

Student Name Student ID

Leader: Saranga S.A. G IT17016230

Member 2: De Silva N. IT17006880

Member 3: L.S. Jayasinghe IT17012966

Member 4: M.V. Lakshitha IT17410250

Supervisor
Dr. Dharshana Kasthurirathna

Introduction

• Why Micro-Services ?

• Current trends and practices in Micro-Services

• Why Kubernetes ?

• Problem definition

Problems

Constant monitoring of metrics through APM tools.
E.g.-Resource utilization process[1-2]

Difficult to understand why a problem occurs even
though there is knowledge that a problem has
occurred[5]

Have to make use of multiple monitoring sources to
make effective decisions[3-5]

In short the research
problem that our
research aims to fulfil
can simply be
described as follows

“In deploying Microservices through Kubernetes, there is no
efficient and effective way for developers to evaluate and
monitor the effectiveness and viability of a microservice
deployment and identify possible performance bottlenecks.
Furthermore, developers are not able to optimize their
deployment such that they can make the optimal use of their
deployed microservices in the cluster.”

Research
Questions

Can current orchestration tools
successfully monitor relationships

among microservices ?

How effective is the proposed
optimization model compared to

current optimization models ?

What is the impact of pod load
prediction in determining an

optimal deployment strategy ?

What is the importance and the
impact of identifying the resiliency
of microservices in deployments ?

Main
Objective

To model a network science-based approach to govern
microservice deployments through evaluation and
analysis of metrics gathered, and ultimately produce a
proposed model which aids to optimize microservice
deployments.

Sub
Objectives

To increase the efficiency of microservices deployments by applying the
metrics used in network analysis, such as centrality and resilience
measures and link predictions on identified dependency
measurements.

To develop an improved auto-scaling policy for a deployment, based on
load prediction

To development of a business intelligence dashboard to evaluate
performance and monitor microservice deployments.

To identify key factors which lead to performance reduction in
microservice deployments and come up with an optimal deployment
strategy.

Kubernetes Cluster

Collect metrics Analyze metrics
Generate

Dependency Map

Evaluated
Dependency level

Load Prediction

Resiliency
Analysis

Predicted
utilization values

Resiliency
Evaluation

Optimal
Deployment

Strategy

Gihan

Sanjaya

Lakshitha

Nishitha

Task 2019 2020

Nov Dec Jan Feb Mar Apr May June Jul Aug Sep Oct

Project Charter Submission

Requirement Gathering

Requirement Analysis and Feasibility

Project Proposal Report and Presentation

SRS Documentation

Microservice cluster creation

Metric extraction and analysis

Developing dependency map

Developing load prediction algorithm

Developing resiliency analysis system

Developing final optimization algorithm

Integration of optimization algorithm with dashboard

Progress Presentation 1

Testing

Final Report and Presentation

Progress Presentation 2

Requirements

▪ User should be able to view optimal deployment strategy for a given cluster

▪ User should be able to view possible deployment suggestions in order to optimize the

deployment

▪ System should analyze the resiliency of the identified microservices in the cluster

▪ Load prediction should be performed on the identified microservices

▪ Load predictions should be made based for a maximum of 24hrs ahead

▪ Auto scaler should be configured to proactively auto scale based on predicted load

▪ Optimal deployment strategy for a particular deployment should be determined using

load prediction, dependency measurements and resiliency evaluation

Functional
Requirements

Requirements

• Usability

• Reliability

• Availability

• Interoperability

• Performance

Non
Functional

Requirements

Expected Outcomes

• To create a weight-based dependency network using metric
analysis which highlights dependencies between the
interconnected microservices.

• To create an improved auto-scaling policy integrating load-
prediction analysis.

• To improve the performance of microservice deployments
through resiliency analysis.

• To increase the performance in microservice deployments
through the combination of the above-mentioned approaches.

Commercialization

Initial plan is develop model
into an open source tool.

In the future, with the addition
of newer features, we plan on
making this tool a freemium

tool.

A network science based approach for the generation of
dependency map and a service mesh based on the network

traffic and user behavior on a Kubernetes cluster

Saranga S.A.G

IT17016230

Introduction

• How Kubernetes works ?

• What is a service mesh ?

• Service Gateway

• Problem definition

Service
Gateway

Frontend
Server

Customer
Service

Order Service

Backend
Server

Network Latency : 2.8ms
Requests Per Minutes : 7
Protocol : HTTP

Network Latency : 3.1ms
Requests Per Minutes : 1
Protocol : HTTPS

Network Latency : 1.7ms
Requests Per Minutes : 10
Protocol : HTTPS

Network Latency : 2.2ms
Requests Per Minutes : 25
Protocol : HTTP

Network Latency : 2.7ms
Requests Per Minutes : 12
Protocol : HTTP

Auth Service

Related Research
and

Research Gap

• [1]Istio: Modernize digital applications with microservices management using
the istio service mesh

• [4 Service Dependency Based Dynamic Load Balancing Algorithm for Container
Clusters

• Deploying Microservice Based Applications with Kubernetes: Experiments and
Lessons Learned

A data science based approach for an improved
auto-scaling policy in Kubernetes based on

load prediction

De Silva N.

IT17006880

Introduction

• What is autoscaling ?

• Current Autoscaling tools by Kubernetes

• What is Kubernetes HPA and how it works ?

• Problems in the current implementation of HPA

• Why we focused about issues in HPA ?

I. Response delay caused by the time required for Pod initialization[1,7]

II. Response delay causes increases the user's request response time, resulting
drop in service quality [1,7]

III.Ineffective scaling caused due to the under allocation of resources in the
configuration process[1,7]

Problems faced in the current implementation of
HPA

Related Research

▪ [1] Uses a combination of ARIMA model and Empirical Mode Decomposition (EMD) in order to
predict resource usage

• Highlights current issues such as the response delay in Kubernetes

• However, the use of EMD model has some drawbacks explained in [2]

▪ [3] Proposes a resource prediction algorithm called CRUPA

• The CRUPA algorithm is based on a time series analysis model (ARIMA) combined with docker
container techniques.

• However this approach does integrate with existing auto-scaling tools provided by Kubernetes
as well as does not make use of machine learning tools in order to perform the prediction
process.

▪ [4-6] compares various models for short term load forecasting and their prediction accuracy

Objective

• To develop an improved auto-scaling policy for a deployment, based
on load prediction

Research Questions

• What is the impact of load prediction in coming up with an optimal
deployment strategy ?

• How accurately can we predict utilization values ?

• What is the impact of load prediction on the identified microservices in
the overall performance of the cluster ?

Steps in the development of load prediction
algorithm

Obtain the list microservices that show high level of dependency
based on the proposed dependency map

Identify the relevant pods in which the identified microservices
are deployed

Obtain the CPU utilization metrics of the deployed pods

Convert the metrics obtained into a time series

Steps in the development of load prediction
algorithm cont.

Plot time series to identify the relevant time series components

Convert time series to a stationary dataset

Develop algorithm using prediction model to forecast future CPU
utilization values for given pods

Forecasted CPU utilization values will be forwarded to optimization
algorithm and used to configure auto-scaling of the cluster

Expected
Outcome

To create an improved auto-scaling policy integrating load-
prediction analysis which solves the current issues found in the
HPA in Kubernetes

A network science based approach for evaluation of
resiliency among microservices through the use of

Chaos Engineering

Lakshitha M.V
IT17410250

Introduction

• What is resilience?

• What are the ways to analyze resilience?

• What is Chaos Engineering?

• What are the tools used in Chaos Engineering?

• Importance of analyzing resilience

Currently the dependency network is not considered when
measuring the importance of a service in the deployment

Related Work

• [1]Gremlin: Systematic Resilience Testing of
Microservices

• how to use Gremlin to express common failure scenarios and
how developers of an enterprise application were able to
discover previously unknown bugs in their failure-handling code
without modifying the application.

• [4]Chaos Monkey: Increasing SDN Reliability
through Systematic Network Destruction

Objectives

• Evaluate the resilience of microservices using Chaos Engineering to
provide data to generate an optimal deployment strategy

Research questions

• What are the impact of microservices on each other?

• How does the dependency network affect on the deployment of
microservices?

• How to evaluate resiliency of microservices without
interrupting customers?

Chaos
Engineering

Chaos Monkey - randomly kills a microservice

Chaos Gorilla - kills entire availability zone

Chaos Kong - kill whole reigon

Latency Monkey - Introduces communication delays to simulate
degradation or outages in a network.

Doctor Monkey - Performs health checks, by monitoring performance
metrics such as CPU load to detect unhealthy instances

Failure Injection Testing - designed to give developers a “blast radius”
rather than unmanaged chaos

Steps in
designing a

Chaos
Experiment

Pick a
hypothesis

Choose the
scope of the
experiment

Identify the
metrics you’re
going to watch

Notify the
organization

Run the
experiment

Analyze the
results

Increase the
scope

Automate

Stimulating failovers to determine the highly dependent nodes

[7]How Netflix does failovers in 7 minutes flat

Expected Outcome

• To generate a detailed evaluation report on the resiliency
of the microservices

A network science based approach for generating
optimal deployment strategy by using dependency, load
predictions and resiliency measures among microservices

in Kubernetes.

L.S Jayasinghe

IT17016230

Availability and
Network latency
•When we deploy microservices,
we deploy them in many nodes.
because we need to increase
availability.

•In the Kubernetes cluster, we
have master node and salve
nodes, these nodes can be
located in the multiple places,
may be another country.

•This problem causes delays
between nodes. This is called
network latency[2,4].

•That is affected to overall
response time[1]

•E.g.: if network latency is high.
Overall response time will be
high.

Network Latency
between different

regions (Azure Cloud)

•Lowest latency in December:
Australia central1 region – Australia
central2 region(1ms)[5]

•Highest latency in December:
Australia central-South
Africa(392ms)[5]

How to
avoid

from high
network
latency

All the Microservices can be
deployed in one Big Node.

Micro-services with higher
communication rate can be
deployed in nearby nodes.

One Big Node

•If all the microservices are
deployed in one big Node, we
can decrease network latency.

•But then the application will
become monolithic. Therefore
availability can be reduced
and it is one of the main
features of Micro-Service
architecture

Decrease
Overall network

latency
(scenario 1)

•If the couple of nodes are
located in very far, the
communication delay time
is very low, also if couple of
node are located near,
communication is very fast.

•Best for multi-region
problem

Scenario 2

• Microservice A and C
communicate more than
microservice A and B.

Related work

There is one research found on optimal
deployment strategy[8], it is only concerned
about ,

• resource power

• replication

• dependency map

Our research,

• Load prediction

• Resiliency

Objective

• To identify key factors which lead to performance reduction in microservice
deployments and come up with an optimal deployment strategy.

Research
Questions

HOW SAME REGION NETWORK
LATENCY AFFECT ON OVERALL

PERFORMANCE ?

HOW DOES ALL THE METRICS
AFFECT ON THE OPTIMAL

DEPLOYMENT ALGORITHM ?

HOW DOES THE NODE
NETWORK COMMUNICATE
WITH THE POD NETWORK ?

HOW DOES DIFFERENT
SERVICES AFFECT ON

ALGORITHM?

Proposed
Solution

To solved these previous scenario we
develop an optimal deployment

algorithm. It ensures the system has
optimal availability and low network
latency. It controls replication of the
microservices and increases overall

system performance.

To make this optimization algorithm we should be
concerned about,

• Resource power

• Dependency map

• Future loads

• resiliency

• Network latency

• Node resource power

• Replication of microservices

Methodology

GET THE METRIC VALUES
FROM DEPENDENCY MAP,

LOAD PREDICTIONS,
RESILIENCY

CREATE A NODE
MAP(NETWORK LATENCY
MAP:SOCKPERF (LINUX))

ANALYSIS THE
INFORMATION USING

OPTIMAL DEPLOYMENT
ALGORITHM[6]

SHOW NEXT 24 HOURS
DEPLOYMENT MAP AND
FUTURE SUGGESTION IN

THE UI

https://github.com/mellanox/sockperf

Path for the creation of optimal
deployment strategy…

• Multi object optimization algorithm

• Identify shortest path between node(Dijkstra
algorithm)[7]

• Rank all the metrics

• Identify correct deployment place using the
algorithm

Expected Outcomes

• To generate an optimal deployment strategy for a given cluster based on load prediction, dependency analysis and
resilience evaluation.

• Next 24 hours deployment map

Automated Deployment

YAML

Discussion
and

Conclusion

Tools and frameworks such as Kubernetes provide developer a way
in which to deploy and run their microservice applications easily with
minimal configuration.

However, currently, there are no such ways for a developer to
evaluate the effectiveness of a particular deployment and identify
potential performance issues.

Furthermore, since identification of these issues require extensive
analysis of metrics, it can be difficult for developer to evaluate if a
particular microservice meets the expected performance criteria.

Therefore, a solution should be developed which performs the
above-mentioned metric analysis and come up with a model which
identifies the potential performance issues such that developers can
get the optimal use of their deployed microservices.

Questions ?

Thank you!

References - main

• [1]"DataDog/the-monitor", GitHub, 2020. [Online]. Available: https://github.com/DataDog/the-
monitor/blob/master/kubernetes/monitoring-kubernetes-performance-metrics.md

• [2]"Resource Usage Monitoring in Kubernetes", Kubernetes.io, 2020. [Online]. Available:
https://kubernetes.io/blog/2015/05/resource-usage-monitoring-kubernetes/

• [3]"Monitoring Kubernetes (Part 1): The Challenges and Data Sources - DZone Performance", dzone.com,
2020. [Online]. Available: https://dzone.com/articles/monitoring-kubernetes-part-1-the-challenges-and-da.

• [4]"Challenges of Monitoring and Troubleshooting in Kubernetes Environments | Sumo Logic", Sumo Logic,
2020. [Online]. Available: https://www.sumologic.com/blog/troubleshooting-kubernetes/.

• [5]D. Snyder, "How to Overcome Kubernetes Monitoring Challenges", OverOps Blog, 2020. [Online].
Available: https://blog.overops.com/how-to-overcome-monitoring-challenges-with-kubernetes/.

• [6]M. Vizard, "Running Kubernetes at Scale Top 2020 Challenge - Container Journal", Container Journal,
2020. [Online]. Available: https://containerjournal.com/topics/container-management/running-kubernetes-
at-scale-top-2020-challenge.

References - main

• [7]"Kubernetes: The Challenge of Deploying & Maintaining", Techolution, 2020. [Online]. Available:
https://techolution.com/kubernetes-challenges/.

• [8]"Kubernetes Challenges for Enterprises", Network Computing, 2020. [Online]. Available:
https://www.networkcomputing.com/data-centers/kubernetes-challenges-enterprises.

• [9]"Monitoring Kubernetes (Part 1): The Challenges and Data Sources - DZone
Performance", dzone.com, 2020. [Online]. Available: https://dzone.com/articles/monitoring-kubernetes-
part-1-the-challenges-and-da.

• [10]Heinrich, Robert & van Hoorn, André & Knoche, Holger & Li, Fei & Lwakatare, Lucy Ellen & Pahl,
Claus & Schulte, Stefan & Wettinger, Johannes. (2017). Performance Engineering for Microservices:
Research Challenges and Directions.

• [11]Fazio, Maria & Celesti, Antonio & Ranjan, R. & Liu, Chang & Chen, Lydia & Villari, Massimo. (2016).
Open Issues in Scheduling Microservices in the Cloud. IEEE Cloud Computing.

References-Gihan

• [1] J. Zhang, R. Ren, C. Huang, X. Fei, W. Qun and H. Cai, "Service Dependency Based Dynamic Load Balancing Algorithm for
Container Clusters," 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), Xi'an, 2018, pp. 70-77.
doi: 10.1109/ICEBE.2018.00021
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8592632&isnumber=8592611.

• [2] M. Gawel and K. Zielinski, "Analysis and Evaluation of Kubernetes Based NFV Management and Orchestration," 2019
IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 2019, pp. 511-513.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8814580&isnumber=8814488

• [3] B. Carter, "Growing Software Applications by Incremental Development of Heterogeneous Micro-Applications Using
Cellular Regeneration Concepts," 2015 Annual Global Online Conference on Information and Computer Technology (GOCICT),
Louisville, KY, 2015, pp. 1-5.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7545087&isnumber=7545077

• [4] Preeth E N, F. J. P. Mulerickal, B. Paul and Y. Sastri, "Evaluation of Docker containers based on hardware utilization," 2015
International Conference on Control Communication & Computing India (ICCC), Trivandrum, 2015, pp. 697-700.
L: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7432984&isnumber=7432856.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8592632&isnumber=8592611
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8814580&isnumber=8814488
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7545087&isnumber=7545077
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7432984&isnumber=7432856

References-Nishitha

• [1] Zhao, A., Huang, Q., Huang, Y., Zou, L., Chen, Z., & Song, J. “Research on Resource Prediction Model Based on
Kubernetes Container Auto-scaling Technology.” IOP Conference Series: Materials Science and Engineering,2019.

• [2]Yamin Wang, L. Wu and Shouxiang Wang, "Challenges in applying the empirical mode decomposition based
hybrid algorithm for forecasting renewable wind/solar in practical cases," 2016 IEEE Power and Energy Society
General Meeting (PESGM), Boston, MA, 2016, pp. 1-5

• [3]Y. Meng, R. Rao, X. Zhang and P. Hong, "CRUPA: A container resource utilization prediction algorithm for auto-
scaling based on time series analysis," 2016 International Conference on Progress in Informatics and Computing
(PIC), Shanghai, 2016, pp. 468-472

• [4] Nguyen, H., & Hansen, C. K. “Short-term electricity load forecasting with Time Series Analysis.” 2017 IEEE
International Conference on Prognostics and Health Management (ICPHM).

• [5] Bozkurt, Ö. Ö., Biricik, G., & Tayşi, Z. C. “Artificial neural network and SARIMA based models for power load
forecasting in Turkish electricity market”.2017.

• [6] Vagropoulos, S. I., Chouliaras, G. I., Kardakos, E. G., Simoglou, C. K., & Bakirtzis, A. G. “ Comparison of
SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting.” 2016 IEEE
International Energy Conference (ENERGYCON).

• [7]Kim, Won-Yong & Lee, Jin-Seop & Huh, Eui-Nam. (2017). Study on proactive auto scaling for instance through
the prediction of network traffic on the container environment.

References-Lakshitha

• [1]"Systematic Resilience Testing of Microservices", 2016 IEEE 36th International Conference on Distributed
Computing Systems. Available: https://ieeexplore.ieee.org/abstract/document/7536505[Accessed: 27- Jan- 2020]

• [2]"Chaos Engineering" Basiri, A., Behnam, N., de Rooij, R., Hochstein, L., Kosewski, L., Reynolds, J., & Rosenthal,
C. (2016). . IEEE Software, 33(3), 35-Available: https://ieeexplore.ieee.org/abstract/document/7436642[Accessed:
28- Jan- 2020]

• [3]"Optimal and Automated Deployment for Microservices",FASE 2019: Fundamental Approaches to Software
Engineering pp 351-368 Available:https://link.springer.com/chapter/10.1007/978-3-030-16722-6_21

• [4]"Chaos Monkey: Increasing SDN Reliability through Systematic Network Destruction" Available
: https://dl.acm.org/doi/pdf/10.1145/2785956.2790038 [Accessed: 25- Jan- 2020]

• [5]"Improving Kubernetes Resiliency with Chaos Engineering" Available:https://medium.com/faun/failures-are-
inevitable-even-a-strongest-platform-with-concrete-operations-infrastructure-can-7d0c016430c6 [Accessed: 20-
Jan-2020]

• [6]"Chaos Engineering by Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak, Nora Jones, and Ali Basiri
Available: http://channyblog.s3-ap-northeast-2.amazonaws.com/data/channy/2018/01/18023151/chaos-
engineering [Accessed: 23-Jan-2020]

• [7]"How Netflix does failovers in 7 minutes flat" Available:https://opensource.com/article/18/4/how-netflix-does-
failovers-7-minutes-flat [Accessed: 23-Jan-2020]

https://ieeexplore.ieee.org/abstract/document/7536505
https://ieeexplore.ieee.org/abstract/document/7436642
https://link.springer.com/book/10.1007/978-3-030-16722-6
https://link.springer.com/chapter/10.1007/978-3-030-16722-6_21
https://dl.acm.org/doi/pdf/10.1145/2785956.2790038
https://medium.com/faun/failures-are-inevitable-even-a-strongest-platform-with-concrete-operations-infrastructure-can-7d0c016430c6
http://channyblog.s3-ap-northeast-2.amazonaws.com/data/channy/2018/01/18023151/chaos-engineering
https://opensource.com/article/18/4/how-netflix-does-failovers-7-minutes-flat

• [1]"Analysis of HTTP Performance Problems", W3.org, 2020. [Online]. Available:
https://www.w3.org/Protocols/HTTP-NG/http-prob. [Accessed: 27- Jan- 2020].

• [2]"What is cloud service latency? - Definition from WhatIs.com", WhatIs.com, 2020. [Online]. Available:
https://whatis.techtarget.com/definition/cloud-service-latency. [Accessed: 27- Jan- 2020]

• [3]"What Is Latency and How to Reduce It - KeyCDN Support", KeyCDN, 2020. [Online]. Available:
https://www.keycdn.com/support/what-is-latency. [Accessed: 27- Jan- 2020].

• [4]"Test Azure virtual machine network latency in an Azure virtual network", Docs.microsoft.com, 2020.
[Online]. Available: https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-test-latency.
[Accessed: 27- Jan- 2020].

• [5]2020. [Online]. Available: https://docs.microsoft.com/en-us/azure/networking/azure-network-latency
https://searchcloudcomputing.techtarget.com/feature/Reducing-network-latency-means-focusing-on-
location-location-location. [Accessed: 27- Jan- 2020].

• [6]"Multi-objective optimization", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Multi-objective_optimization. [Accessed: 27- Jan- 2020].

• [7]"Dijkstra's algorithm", En.wikipedia.org, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm. [Accessed: 27- Jan- 2020].

• [8]M. Bravetti, S. Giallorenzo, J. Mauro, I. Talevi and G. Zavattaro, "Optimal and Automated Deployment
for Microservices", Fundamental Approaches to Software Engineering, pp. 351-368, 2019. Available:
10.1007/978-3-030-16722-6_21 [Accessed 27 January 2020].

References - Sanjaya

