
The research addresses the Ine�cient optimization policies in
Kubernetes microservice deployments.

The developed Governance model was evaluated on a sample
microservice cluster containing six microservices.

The proposed model seeks the creation of a holistic perspective
of microservice deployments, through the incorporation of
dependency analysis, load prediction measures, centrality
measures, and resilience measures.

Through the incorporation of the above measures, the research
conducted utilizes the application of an optimization algorithm
to determine an optimal deployment strategy for a given
microservice deployment.

Test Results revealed, the developed governance model proved
to be e�ective in determination of optiamal cluster deployment.

Future work will include the incorporation of additional service
level and infrastructure level metrics to enhance the optimization
process further.

[1] R. Heinrich et al., “Performance engineering for microservices: Research challenges &
directions,” ICPE 2017 – Companion of the 2017 ACM/SPEC International Conference on
Performance Engineering, pp. 223–226, 2017, doi: 10.1145/3053600.3053653.

[2] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, “TOSCA-based and federation-aware
cloud orchestration for Kubernetes container platform,” Applied Sciences (Switzerland),
vol. 9, no. 1, 2019, doi: 10.3390/app9010191

[3] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud microservice
applications,” ICPE 2019 – Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, pp. 25–32, 2019, doi: 10.1145/3297663.3310309.

Through the application of the developed optimization algorithm,
optimal deployment strategies for the cluster were generated based
on the following objective criteria:

Best cluster performance
Highest cluster availability
Most cost bene�cial cluster deployment

Current tools and services o�ered by platforms such as Kubernetes
fail to obtain a holistic view of microservice deployments and
thereby optimize cluster performance.

The presence of disjoint monitoring took which fails to provide
insight into possible solutions as to why a particular problem or
bottleneck has occurred.

Di�cultly in successfully con�guring and integrating these
monitoring disjoint monitoring tools with the existing tools used
by organizations.

A uni�ed governance model for optimizing microservice
deployments factoring in dependency analysis, load prediction,
centrality analysis as well as and resilience evaluation.

Current solutions proposed to fail to capture critical dimensions of
microservice deployments.

No current solution proposed that takes into consideration an
integrated modeling strategy, factoring key elements essential
elements required in optimizing microservice deployments.

Currently, only way that developers and system administrators
can e�ectively evaluate the e�ectiveness of their Kubernetes
deployments is through APM tools.

These tools are often disjoint and often fail to provide a holistic
perspective of Kubernetes deployments.

This disjoint nature hinders the creation of holistic perspectives
on Kubernetes deployments and fails to provide insight into the
creation of optimization deployment policies.

Introduction

Results and Discussions

Conclusion

References

[1] highlights the need for new modeling strategies that capture
the recent advances in deployment technology such as Kubernetes.

[2] proposes an architectural approach that federates Kubernetes
clusters using a TOSCA-based cloud orchestration tool.

[3] address the issue of �nding the best-suited resources for the
microservice to be deployed in order to achieve the best performance
of microservice applications while minimizing resource consumption.

Background

Research Problem

Proposed Model

Methodology

Dashboard

Optimization
algorithm

Load Prediction
and Centrality

Analysis

Resilience
Evaluation

through Chaos
Toolkit

Predicted link weights,resource
utilization and centrality measures

Co-dependency
network

Evaluated
resilience
measures

through
chaos

reports

Output to Dashboard

Output to Dashboard

Dependency
measures

Generated Co-
dependency network

Istio System

Kiali Prometheus Grafana

Kubernetes Cluster

Kubernetes
API

Kiali
API

Prometheus
API

Grafana
API

Database

Apply YAML
files on
clusterNode

Server

Optimized
Deployment YAML

Output
CSV generated

from Node
server

containing
required data

(resource utilization
history

/ inter - microservice
dependecy measure

history)
 for given time period

Co-dependency map

Quanti�es the dependency measurements of microservice links.

Load Prediction and centrality

Performs the prediction of load-based metrics and evaluation of
centrality measures on performed on microservice

co-dependency networks.

Resilience Evaluation

Evaluates the Resilience of deployed cluster through
Chaos Engineering.

Optimization Algorithm

Creates optimized deployment strategies through
utilization of predicted load-based metrics,
centrality measures, and latency measures.

Co-Dependency Map

Optimization Algorithm

Load Prediction and
Centrality

Resillence
Evaluation

K8 - ADVISoR

A Network Science Based Approach for
Optimal Microservice Governence

Kiali Prometheus

Kubernetes Cluster

Node Server

Co - dependency map

No - SQL DB

Istio

CSV files from Node Server

Load Prediction and Centrality Analysis

Flask Server

To Optimization Algorithm via API

Co - dependency network

Resilience Evaluation

Performing Chaos experiments and evaluating
resiliency

To Optimization Algorithm

Co-Dependency Map

Load Prediction and Centrality

Resillence Evaluation

Optimization Algorithm

 Average
dependency
Link Latency

Fitness
(lower is
be�er)

Availability
Fitness

(higher is
be�er)

Ra�o Fitness
(lower is
be�er)

Cost fitness
(lower is
be�er)

Total Number
of Instance

Exis�ng 2.448 ms 0 0 0.374 16

Best
Performance

0.1 ms 3.144 0
0.374

32

Highest
Availability

0.651 ms 3.144 2.5
0.374

34

Most
Cost-beneficial

Not measured 3.084 0 0.332 24

Initial Population

HP A Algorithm

Calculate Fitness

Non Dominate Sorting

Parent Selection

Crossover

Mutation

Solution Selection

Max
Generation Reached?

Predicted
Dependency

Map

Replication
Of Each
Service

Predicted
Resource

Metrics

Solutions

Cluster
Resource

Details

Node
Latency

Map

NSGA II

Saranga S.A.G | De Silva N. | L.S Jayasinghe | M.V Lakshitha

Department of Software Engineering
Sri Lanka Institute of Information Technology

K8 - ADVISoR

