
The research addresses the Ine�cient optimization policies in 
Kubernetes microservice deployments.

The developed Governance model was evaluated on a sample 
microservice cluster containing six microservices.

The proposed model seeks the creation of a holistic perspective 
of microservice deployments, through the incorporation of 
dependency analysis, load prediction measures, centrality 
measures, and resilience measures. 

Through the incorporation of the above measures, the research 
conducted utilizes the application of an optimization algorithm 
to determine an optimal deployment strategy for a given 
microservice deployment.

Test Results revealed, the developed governance model proved 
to be e�ective in determination of optiamal cluster deployment.

Future work will include the incorporation of additional service 
level and infrastructure level metrics to enhance the optimization 
process further.
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Through the application of the developed optimization algorithm, 
optimal deployment strategies for the cluster were generated based 
on the following  objective criteria:

Best cluster performance 
Highest cluster availability
Most cost bene�cial cluster deployment

Current tools and services o�ered by platforms such as Kubernetes 
fail to obtain a holistic view of microservice deployments and 
thereby optimize cluster performance.

The presence of disjoint monitoring took which fails to provide 
insight into possible solutions as to why a particular problem or 
bottleneck has occurred.

Di�cultly in successfully con�guring and integrating these 
monitoring disjoint monitoring tools with the existing tools used 
by organizations.

A uni�ed governance model for optimizing microservice 
deployments factoring in dependency analysis, load prediction, 
centrality analysis as well as and resilience evaluation.

Current solutions proposed to fail to capture critical dimensions of
microservice deployments.

No current solution proposed that takes into consideration an 
integrated modeling strategy, factoring key elements essential 
elements required in optimizing microservice deployments.

Currently, only way that developers and system administrators 
can e�ectively evaluate the e�ectiveness of their Kubernetes 
deployments is through APM tools.

These tools are often disjoint and often fail to provide a holistic 
perspective of Kubernetes deployments.

This disjoint nature hinders the creation of holistic perspectives 
on Kubernetes deployments and fails to provide insight into the 
creation of optimization deployment policies.
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[1] highlights the need for new modeling strategies that capture 
the recent advances in deployment technology such as Kubernetes.

[2] proposes an architectural approach that federates Kubernetes 
clusters using a TOSCA-based cloud orchestration tool.

[3]  address the issue of �nding the best-suited resources for the 
microservice to be deployed in order to achieve the best performance 
of microservice applications while minimizing resource consumption.
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